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66

“... there will be less of a need for people to make

the network work on a day-to-day basis because it
will be more automated but | think there will be far
more things that we can do with the network, so
there will be a massive increase in people
programming the network ...”

Y b

— Nick McKeown, Stanford
Q&A ONS April 12




Background

Data Path ML Inference
Traditional ML == E E

In-Network ML —>
ﬂ Servers
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Programmable Network Devices

Use cases: cybersecurity, advanced routing, traffic engineering, etc.

Source: C. Zheng, M. Zang, X. Hong, L. Perreault, R. Bensoussane, S. Vargaftik, Y. Ben-ltzhak, and N. Zilberman,
“Planter: Rapid prototyping of in-network machine learning inference,” ACM SIGCOMM Communication Review, 2024.
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In-network ML inference overview
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In-network ML inference overview

ML model preparation Traffic flows

ML model ML model Feature Programmable switch

training design engineering
e.g. Planter [1]
ML model mapping e.g. Taurus [2]
-
Network Hardware
Trained programming specific
model language/ program

_____

Programmable

Random Forest switch ASIC

Binarized

Neural Network FAEL 1

Neural Network SmartNIC / DPU e.g. N3IC [3]

J

Control plane | Data plane

[1]1C. Zheng and N. Zilberman. Planter: Seeding trees within switches. In SIGCOMM Poster Session. ACM, 2021.
[2] T. Swamy, A. Rucker, M. Shahbaz, I. Gaur, and K. Olukotun. Taurus: A Data Plane Architecture for Per-Packet ML. In ASPLOS. ACM, 2022.
[3] G. Siracusano, S. Galea, D. Sanvito, M. Malekzadeh, G. Antichi, P. Costa, H. Haddadi, R. Bifulco. Re-architecting traffic analysis with neural network interface cards. In NSDI. Usenix, 2022.
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In-network inference in switches

Why switches?
* Very high throughput

* Very low latency

* Many ports, e.g. 32x100 Gbps ports

* Ubiquitous presence in the network
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In-network inference in switches

Why switches?
* Very high throughput

* Very low latency

* Many ports, e.g. 32x100 Gbps ports

* Ubiquitous presence in the network

Yet, there are several constraints...

* Low available memory

 Limited support for mathematical operations

 Limited number of operations per packet

Aristide T-J. Akem In-network inference with P4: from stateless to hybrid approaches 21/01/2026



In-network inference in switches

Why switches?
* Very high throughput

* Very low latency

* Many ports, e.g. 32x100 Gbps ports

* Ubiquitous presence in the network

Yet, there are several constraints...

* Low available memory

 Limited support for mathematical operations

 Limited number of operations per packet

Aristide T-J. Akem In-network inference with P4: from stateless to hybrid approaches 21/01/2026



Tree-based models for in-network inference 6

Tree-based models are most suitable for in-switch deployment

« Their simple logical structure makes them easy to map to the switch pipeline

Zhaoqi Xiong and Noa Zilberman. 2019. Do Switches Dream of Machine Learning? Toward In-Network
Classification. In ACM HotNets. ACM, NY, USA, 25-33. https://doi.org/10.1145/3365609.3365864.

« They still outperform deep learning on tabular data

Léo Grinsztajn, Edouard Oyallon, Gaél Varoquaux. Why do tree-based models still outperform deep learning
on typical tabular data? NeurlPS 2022 Datasets and Benchmarks Track, Nov 2022, New Orleans, USA.

petal length (cm) <= 2.45
gini = 0.667

samples = 150
value =[50, 50, 50]
class = setosa

petal width (cm) <= 1.75
ini=0.5

samples = 100
value = [0, 50, 50]
class = versicolor
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In-network ML inference workflow

Control plane
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In-network ML inference workflow
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In-network ML inference workflow

Feature Extraction . . Model translation to
) RF Model Training :
and computation M/A table entries

(-pcap) (Tshark/Python) (Python) (Python)

Dataset

ML server

Control plane

Data plane

Features extracted with Tshark:
Packet length,
Source port & destination port,

- Protocol,

» - TCP flags (SYN, ACK, FIN, PSH, RST),

- TCP header length,

TCP window size,

UDP length,

Time-to-live (TTL).
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In-network ML inference workflow

Feature Extraction

Dataset .
and computation

RF Model Training
(Python)

Model translation to
M/A table entries

(-pcap) (Tshark/Python)

ML server

Control plane

Data plane

(Python)

Model training:
Scikit-Learn Python libraries

Feature selection:
Importance as expressed by the
Mean Decrease in Impurity (MDI)

Hyperparameters:
Number of trees (for RF)
Max tree depth, etc.
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In-network ML inference workflow
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In-network ML inference workflow
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(.pcap) and computation (Python) M/A table entries
.pcap (Tshark/Python) y (Python)
ML server ‘
Controller
Control plane

Data plane

Aristide T-J. Akem In-network inference with P4: from stateless to hybrid approaches 21/01/2026



In-network ML inference workflow

Feature Extraction . . Model translation to
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In-network ML: from stateless to hybrid approaches '8

Per-packet (stateless) Per-flow (stateful) Joint packet-flow (hybrid)
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In-network ML: from stateless to hybrid approaches n

Extract packet
headers

Packet-based
inference

Inference-aware
forwarding

Per-packet (stateless) Per-flow (stateful) Joint packet-flow (hybrid)
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In-network ML: from stateless to hybrid approaches n

Extract packet
headers

* Intuitive/natural

* All packets are classified

* Norich per-flow statistics

* Limited accuracy in complex tasks

Packet-based
inference

Inference-aware
forwarding

Per-packet (stateless) Per-flow (stateful) Joint packet-flow (hybrid)
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Henna: Stateless Hierarchical packet-level ML inference n

Motivation

Inference task =) Train a single model for the task and map it to the switch
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Henna: Stateless Hierarchical packet-level ML inference n

Motivation

Inference task =) Train g single model for the task and map it to the switch

All prior works adopt this approach known as flat classification

Monolithic classifiers can Breaking down tasks

be too complex for hierarchically can simplify
challenging tasks them
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Henna: Stateless Hierarchical packet-level ML inference

Illustration

@!'“ge =
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Henna: Stateless Hierarchical packet-level ML inference

Illustration
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Henna: Stateless Hierarchical packet-level ML inference

Our proposal
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Henna: Stateless Hierarchical packet-level ML inference

Our proposal

M/AO M/A 1 M/A 2

e

g Features . . 5
o
Packet - treel ) 2 e o @ = “w
o Voting o 2 tE Igun g group A g *
@ table to © © C o - ®©
'l Features c - m© » W o
A £ o = il Features W o
c tree 2 © = - o]
= (T group B
\ \l-l-'
15t stage 2"d stage
apply {
// apply feature tables of 1st stage
) tbl s1 fe.apply();
/* Feature tables for first stage RF*/ /* Code tables for first stage RF*/ thl s1 f1.apply();
table tbl s1 fo{ table tbl s1 cwe{ tbl s1_f2.apply();
key = {meta.hdr_srcport: range @name("s1 _fe");} key = {meta.cw_sl_t@: ternary;} tzi_sl_?-appiyg;
. _ . . tbl_s1_fa.apply();
actions = {@defaultonly nop; SetCode s1 fo;} actions = {@defaultonly nop; SetClass_si1_te;} b1 51 £5.0pp1y ()3
size = 358; size = 498;
const default_action = nop(); const default_action = nop(); // apply code tables of 1st stage
} } tbl s1 cwe.apply();

thl s1 cwl.apply();
thl s1 _cw2.apply();
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Henna: Stateless Hierarchical packet-level ML inference

Our proposal

M/AO M/A 1 M/A 2

e

Features
tree 1

Features
group A

Packet

Voting

table

Features

Features
tree 2

group B

Ingress control

deparser
Traffic

Manager

deparser

Egress control

-

-

1t stage 2"d stage
apply {
/* Feature tables for the second stage DT's */ /® Code tables for second stage DT's*/ /] check result of first stage to determine which 2nd stage model to apply
// computers - g4 // g4
if (meta.group_class == 5){ //computers
table tbl_S2_g4_f9{ table tbl—SZ—gd{ // apply the feature tables
key = {meta.total len: range @name("s2 g4 f8");} key = {meta.cw s2 g4: ternary;} thl s2 g4 fe.apply();
= . thl_s2_ga fi.apply();
actions = {@defaultonly nop; SetCode s2 ga fo;} actions = {@defaultonly nop; SetClass s2 g4;} tbl s2 ga F2.apply();
size = 6@; s5ize = 490, thl_s2_g4 f3.apply();
. . // apply the code tables
const default_action = nop(); const default_action = nop(); (L 52 80001y );
} } }

else if(meta.group_class == 4){//appliances
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Henna: Stateless Hierarchical packet-level ML inference

Evaluation

Devices
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loT device identification use case
based on the UNSW-loT Traces [1]

[1] https://iotanalytics.unsw.edu.au/iottraces.html
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Henna: Stateless Hierarchical packet-level ML inference

Evaluation
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Henna: Stateless Hierarchical packet-level ML inference

Results
Henna
Metric 1-Stage Gain
1 .

Value Absolute Relative
Precision 65.38% 70.50% 5.12% 7.83%
Recall 55.50% 70.95% 15.45% 27.84%
F1 score 55.54% 67.50% 11.95% 21.52%

Resource 1-Stage  Henna
Overall (w.r.t. total) 5.10% 8.50%
Overall (w.r.t. switch.p4) 13.42%  22.27%
Match-Action units 8 10
Latency at ingress 35.42%  43.40%
Latency at egress 59.15% 62.68%

Classification accuracy

Aristide T-J. Akem
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Resource usage
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Henna: Stateless Hierarchical packet-level ML inference

Results
Henna Resource 1-Stage  Henna
Metric 1-Stage Gain
Value Absolut Relat: | Overall (w.rt. total) 5.10% 8.50% |
SOIULE clatve Overall (w.r.t. switch.p4) 13.42%  22.27%
.. Match-Action units 8 10
Precision 65.38% 70.50% 5.12% 7.83% Latency at ingress 35497 43.407%
Recall 55.50% | 70.95% 15.45% |  27.84% Latency at egress 0157 62,687
| F1 score 55.54% | 67.50% 11.95% 21.52% |
Classification accuracy Resource usage
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In-network ML: from stateless to hybrid approaches

Extract packet
headers

Packet-based
inference

Inference-aware
forwarding

Per-packet (stateless) Per-flow (stateful) Joint packet-flow (hybrid)
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In-network ML: from stateless to hybrid approaches
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In-network ML: from stateless to hybrid approaches

Extract & aggregate

Extract packet packet headers

headers

Packet-based

inference Flow-based ML Default

inference forwarding

Inference-aware
forwarding

Inference-aware
forwarding

Per-packet (stateless) Per-flow (stateful) Joint packet-flow (hybrid)
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In-network ML: from stateless to hybrid approaches

Extract & aggregate

Extract packet packet headers

headers

Packet-based

inference Flow-based ML Default * Richer flow-level features

inference forwarding * Policies implemented at flow-level
 Early packets go unclassified

Inference-aware
forwarding

Inference-aware
forwarding

Per-packet (stateless) Per-flow (stateful) Joint packet-flow (hybrid)
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Flowrest: Practical stateful flow-level inference

Motivation [ Flow = P(src IP, dst IP, src port, dst port, protocol)}

Packet-Level Approaches
* Relatively low accuracy in complex scenarios
* Do notuserich flow-level (FL) features

Flow-level classification provides more context
e.g., by leveraging relationships between flow packets

Most network-wide policies are implemented at flow-level
e.g., for QoS and QoE management
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Flowrest: Practical stateful flow-level inference

Motivation

[ Flow = P(src IP, dst IP, src port, dst port, protocol)}

Packet-Level Approaches
* Relatively low accuracy in complex scenarios
* Do notuserich flow-level (FL) features

Flow-level classification provides more context
e.g., by leveraging relationships between flow packets

Most network-wide policies are implemented at flow-level
e.g., for QoS and QoE management

7

Deploying stateful FL models in switches involves
maintaining state and computing FL features

\
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Flowrest: Practical stateful flow-level inference

Proposed solution

Flow-level classification Tailored Random Forest design
. Featu:c?s calculated over multiple packets in the - Hardware-aware bit-level feature representation
same flow

 Hardware-constrained Random Forest hyper-

* Features such as min, max, mean pkt sizes & IATs o
parametrization

* More effective for difficult inference tasks

Hardware supported bit size

General purpose & open-source

Feature original

* Is nottied to any use case representation
* Can convert any stateless solution to flow level ) Feature original bit size

* First open-source implementation of in-switch
flow-level RF
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Flowrest: Practical stateful flow-level inference

System overview

Hyperparameters tuning Flow management parametrization
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Flowrest: Practical stateful flow-level inference

apply {

// compute the current time

meta.now_timestamp = (bit<32>)(ig prsr_md.global tstamp[47:20]); //msec

_ Get timestamp and
//compute flow ID and hash index
get_flow_ID(meta.hdr_srcport, meta.hdr_dstport); Compute haSheS

get_register_index(meta.hdr_srcport, meta.hdr_dstport);

flow_action_table.apply();

if (meta.f_action l= @) {

// Recirculated flow because of timeout collision

if (hdr.recirc.isvalid()){
meta.is_first = 1;
meta.reg_status = read reg status.execute(meta.register_index);
update_flow ID.execute(meta.register index);
meta.pkt_count = read_pkt_count.execute(meta.register_index);
meta.pkt_len_total = read_pkt_len_total.execute(meta.register_index);
meta.pkt_len_max = read_pkt_len_max.execute(meta.register_index);

meta.ack_flag count = read_ack flag count.execute(meta.register_ index);

update_reg_time_occ.execute(meta.register_index);
// Invalidate the recirculation header
hdr.recirc.setInvalid();
hdr.ethernet.ether_type = TYPE_IPV4;
ipv4 _forward(260);

}

else{
// modify status register

meta.reg_status = read reg status.execute(meta.register_index);

// check if register array is empty

if (meta.reg_status == @){ // we do not yet know this flow
meta.is_first = 1;
update flow ID.execute(meta.register index);
meta.pkt_count = read pkt count.execute(meta.register_index);
meta.pkt_len total = read pkt len total.execute(meta.register_index);
meta.pkt_len_max = read_pkt_len_max.execute(meta.register_index);
meta.ack_flag_count = read_ack_flag_count.execute(meta.register_index);
update reg time occ.execute(meta.register index);
ipva_forward(260);
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IS
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Flowrest: Practical stateful flow-level inference

apply {
// compute the current time

meta.now_timestamp = (bit<32>)(ig prsr_md.global tstamp[47:20]); //msec

//compute flow ID and hash index
get_flow_ID(meta.hdr_srcport, meta.hdr_dstport);
get_register_index(meta.hdr_srcport, meta.hdr_dstport);

flow_action_table.apply();

if (meta.f_action l= @) {

// Recirculated flow because of timeout collision

if (hdr.recirc.isvalid()){
meta.is_first = 1;
meta.reg_status = read reg status.execute(meta.register_index);
update_flow ID.execute(meta.register index);
meta.pkt_count = read_pkt_count.execute(meta.register_index);
meta.pkt_len_total = read_pkt_len_total.execute(meta.register_index);
meta.pkt_len_max = read_pkt_len_max.execute(meta.register_index);

meta.ack_flag count = read_ack flag count.execute(meta.register_ index);

update_reg_time_occ.execute(meta.register_index);
// Invalidate the recirculation header
hdr.recirc.setInvalid();

hdr.ethernet.ether_type = TYPE_IPV4;

ipv4 _forward(260);

IS

else{

// modify status register

meta.reg_status = read reg status.execute(meta.register_index);

// check if register array is empty

if (meta.reg_status == @){ // we do not yet know this flow
meta.is_first = 1; Manage first flow
update flow ID.execute(meta.register index);
meta.pkt_count = read pkt count.execute(meta.register_index); paCketS
meta.pkt_len total = read pkt len total.execute(meta.register_index);
meta.pkt_len_max = read_pkt_len_max.execute(meta.register_index);

meta.ack_flag_count = read_ack_flag_count.execute(meta.register_index

-

update reg time occ.execute(meta.register index);
ipva_forward(260);
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Flowrest: Practical stateful flow-level inference

apply {

// compute the current time
meta.now_timestamp = (bit<32>)(ig prsr_md.global tstamp[47:20]); //msec

//compute flow ID and hash index
get_flow_ID(meta.hdr_srcport, meta.hdr_dstport);
get_register_index(meta.hdr_srcport, meta.hdr_dstport);

flow_action_table.apply();

if (meta.f_action l= @) {

// Recirculated flow because of timeout collision

if (hdr.recirc.isvalid()){
meta.is_first = 1;
meta.reg_status = read reg status.execute(meta.register_index);
update_flow ID.execute(meta.register index);
meta.pkt_count = read_pkt_count.execute(meta.register_index);
meta.pkt_len_total = read_pkt_len_total.execute(meta.register_index);
meta.pkt_len_max = read_pkt_len_max.execute(meta.register_index);

meta.ack_flag count = read_ack flag count.execute(meta.register_ index);

update_reg_time_occ.execute(meta.register_index);
// Invalidate the recirculation header
hdr.recirc.setInvalid();
hdr.ethernet.ether_type = TYPE_IPV4;
ipv4 _forward(260);

}

else{
// modify status register

meta.reg_status = read reg status.execute(meta.register_index);

// check if register array is empty

if (meta.reg_status == @){ // we do not yet know this flow
meta.is_first = 1;
update flow ID.execute(meta.register index);
meta.pkt_count = read pkt count.execute(meta.register_index);
meta.pkt_len total = read pkt len total.execute(meta.register_index);
meta.pkt_len_max = read_pkt_len_max.execute(meta.register_index);
meta.ack_flag_count = read_ack_flag_count.execute(meta.register_index);
update reg time occ.execute(meta.register index);
ipva_forward(260);

Aristide T-J. Akem

else { // not the first packet - get flow ID from register
bit<32> tmp_flow ID;
tmp_flow_ID = read_only flow_ID.execute(meta.register_index);
if(meta.flow _ID != tmp_flow ID){ // hash collision
meta.age_value = read_reg_time_occ.execute(meta.register_index);
if (meta.age value < timeout_threshold){
meta.final class = 255;

ipva_forward(260);

}
else]{
// meta.digest info = 127;
meta.final_class = 127;
recirculate(68);
}
ig dprsr_md.digest_type = 1; // activating the digest for statistics

In-network inference with P4: from stateless to hybrid approaches

}
else { // not first packet and not hash collision

//read and update packet count

meta.is_first = @;

meta.pkt_count = read_pkt_count.execute(meta.register_index);

//read and update feature registers

meta.pkt len total = read pkt len total.execute(meta.register index);
meta.pkt_len _max = read_pkt_len max.execute(meta.register_index);

meta.ack_flag count = read_ack_flag count.execute(meta.register_index);

update_reg time_occ.execute(meta.register_index);

// check if # of packets requirement is met
if(meta.pkt_count == 3){
// apply feature tables to assign codes
table featureo.apply();
table_featurel.apply();
table feature2.apply();
table feature3.apply();
table_featured.apply();

// apply code tables to assign labels
code_table@.apply();
code_tablel.apply();
code_table2.apply();

voting_table.apply();

21/01/2026
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Flowrest: Practical stateful flow-level inference

apply {

// compute the current time
meta.now_timestamp = (bit<32>)(ig prsr_md.global tstamp[47:20]); //msec

//compute flow ID and hash index
get_flow_ID(meta.hdr_srcport, meta.hdr_dstport);
get_register_index(meta.hdr_srcport, meta.hdr_dstport);

flow_action_table.apply();

if (meta.f_action l= @) {

// Recirculated flow because of timeout collision

if (hdr.recirc.isvalid()){
meta.is_first = 1;
meta.reg_status = read reg status.execute(meta.register_index);
update_flow ID.execute(meta.register index);
meta.pkt_count = read_pkt_count.execute(meta.register_index);
meta.pkt_len_total = read_pkt_len_total.execute(meta.register_index);
meta.pkt_len_max = read_pkt_len_max.execute(meta.register_index);

meta.ack_flag count = read_ack flag count.execute(meta.register_ index);

update_reg_time_occ.execute(meta.register_index);
// Invalidate the recirculation header
hdr.recirc.setInvalid();
hdr.ethernet.ether_type = TYPE_IPV4;
ipv4 _forward(260);

}

else{
// modify status register

meta.reg_status = read reg status.execute(meta.register_index);

// check if register array is empty

if (meta.reg_status == @){ // we do not yet know this flow
meta.is_first = 1;
update flow ID.execute(meta.register index);
meta.pkt_count = read pkt count.execute(meta.register_index);
meta.pkt_len total = read pkt len total.execute(meta.register_index);
meta.pkt_len_max = read_pkt_len_max.execute(meta.register_index);
meta.ack_flag_count = read_ack_flag_count.execute(meta.register_index);
update reg time occ.execute(meta.register index);
ipva_forward(260);
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else { // not the first packet - get flow ID from register
bit<32> tmp_flow ID;
tmp_flow_ID = read_only flow_ID.execute(meta.register_index);
if(meta.flow _ID != tmp_flow ID){ // hash collision
meta.age_value = read_reg_time_occ.execute(meta.register_index);
if (meta.age value < timeout_threshold){
meta.final class = 255;

ipva_forward(260);

}
else]{
// meta.digest info = 127;
meta.final_class = 127;
recirculate(68);
}
ig dprsr_md.digest_type = 1; // activating the digest for statistics

!

else { // not first packet and not hash collision
//read and update packet count
meta.is_first = @;
meta.pkt_count = read_pkt_count.execute(meta.register_index);
//read and update feature registers
meta.pkt len total = read pkt len total.execute(meta.register index);
meta.pkt_len _max = read_pkt_len max.execute(meta.register_index);

meta.ack_flag count = read_ack_flag count.execute(meta.register_index);

update_reg time_occ.execute(meta.register_index);

// check if # of packets requirement is met
if(meta.pkt_count == 3){
// apply feature tables to assign codes
table featureo.apply();
table_featurel.apply();
table feature2.apply();
table feature3.apply();
table_featured.apply();

// apply code tables to assign labels
code_table@.apply();
code_tablel.apply();
code_table2.apply();

voting_table.apply();
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Flowrest: Practical stateful flow-level inference

Evaluation

Use cases
* [ntrusion detection based on the CICIDS 2017 dataset - 2 classes
* |ol device identification based on the UNSW loT traces — 26 classes
* More in the paper

Benchmarks
 Packet-level (PL): Planter [1], Mousika [2], Soter [3]
* Flow-level (FL): pForest [4]
 Hybrid (PL+FL): NetBeacon [5]

[1]1C. Zheng and N. Zilberman. Planter: Seeding trees within switches. In SIGCOMM Poster Session, 2021

[2] G. Xie et al. Mousika: Enable general in-network intelligence in programmable switches by knowledge distillation. In IEEE INFOCOM, 2022
[3] G. Xie et al. Soter: Deep learning enhanced in-network attack detection based on programmable switches. In SRDS, 2022

[4] Busse-Grawitz et al. pForest: In-Network Inference with Random Forests. In Arxiv, 2019.

[5] G. Zhou et al. An efficient design of intelligent network data plane. In USENIX Security, 2023.
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Results - Flowrest vs stateless solutions

Flowrest: Practical stateful flow-level inference

Dataset Average Metric Planter Mousika Soter Flowrest
Precision = 94.448% = 87.920%  94.446% | 99.785%

Macro Recall 92.900% 78.359% = 92.906% | 98.682%

CICIDS F1-Score 93.625% @ 81.231%  93.628% § 99.231%
Precision = 94.712% = 86.668% = 94.713% [ 99.700%

Weighted = Recall 94.734% = 86.009% = 94.74% | 98.556%

F1-Score  94.688% = 85.015%  94.690% § 99.124%

Precision = 54.822% = 67.882%  53.608% | 72.839%

Macro Recall 57.523% = 80.543%  55.677% | 81.760%

UNSW F1-Score  48.502% = 69.103%  47.498% | 72.277%
Precision = 78.597% = 90.166% = 78.329% [ 91.538%

Weighted Recall 73.906% 88.285%  72.208% | 89.165%

F1-Score  73.055% = 88.572%  73.084% | 89.733%

Aristide T-J. Akem
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Flowrest: Practical stateful flow-level inference

Results - Flowrest vs stateful solutions

Dataset | Average | Metric | pForest | NetBeacon || Flowrest
Precision | 99.778% 98.251% 99.785%
Macro Recall 98.690% 98.918% 98.682%

F1-Score | 99.231% 98.576% 99.231%

CICIDS
Precision | 99.697% 98.816% 99.700%
Weighted Recall 98.556% 98.793% 98.556%
F1-Score | 99.123% 98.798% 99.124%
Precision | 14.183% 56.256% 72.839%
Macro Recall 18.412% 66.089% 81.760%
UNSW F1-Score | 15.200% 53.284% 72.277%

Precision | 41.582% 81.261% 91.538%
Weighted | Recall 48.407% 73.394% 89.165%
F1-Score | 43.034% 75.470% 89.733%
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In-network ML: from stateless to hybrid approaches

Extract & aggregate

Extract packet packet headers

headers

Packet-based

inference Flow-based ML Default

inference forwarding

Inference-aware
forwarding

Inference-aware
forwarding

Per-packet (stateless) Per-flow (stateful) Joint packet-flow (hybrid)
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In-network ML: from stateless to hybrid approaches
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In-network ML: from stateless to hybrid approaches
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In-network ML: from stateless to hybrid approaches

Packet

Extract packet
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Packet-based
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Extract & aggregate
packet headers

Flow-based ML Default
inference forwarding

Inference-aware

forwarding

Per-flow (stateful)

Packet

Combines the
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packet headers
approaches

Joint packet-
flow inference

Inference-aware
forwarding

Joint packet-flow (hybrid)
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Jewel: Hybrid packet-level and flow-level inference

Motivation

Stateless Approaches
* Relatively lower accuracy in complex scenarios
 Cannot userich FL features

Stateful Approaches
* Leave early packets unclassified when computing flow features
* Number of early packets could vary from 2 to 50 packets
* Could be up to between 67.67% and 98.04% of the total flow length, respectively
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Jewel: Hybrid packet-level and flow-level inference

Motivation

Stateless Approaches
* Relatively lower accuracy in complex scenarios
 Cannot userich FL features

Stateful Approaches
* Leave early packets unclassified when computing flow features
* Number of early packets could vary from 2 to 50 packets
* Could be up to between 67.67% and 98.04% of the total flow length, respectively

7

Hybrid stateless + stateful inference
offers the best of both worlds

~N
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Jewel: Hybrid packet-level and flow-level inference

Prior approach to joint PL+FL inference, e.g. NetBeacon [1]

PL model

Short and long
flow detection

o o
( X o
FL

® O

PL mmjd/? mjﬂ

el
® 00 000 (| X ) (| X
Short flows Long Flows

Early Packets of Long Flows
[1]G. Zhou et al. An efficient design of intelligent network data plane. In USENIX Security, 2023.
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Jewel: Hybrid packet-level and flow-level inference

Prior approach to joint PL+FL inference, e.g. NetBeacon [1]

PL model

Short and long
flow detection

( X )
PL model FL model consumptlon
;ﬁ e o
( X ) ( X )

® 00 00 O
Short flows Long Flows
Early Packets of Long Flows

Increased switch memory

[1]G. Zhou et al. An efficient design of intelligent network data plane. In USENIX Security, 2023.
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Jewel: Hybrid packet-level and flow-level inference

Our approach: single fully joint PL+FL model

Joint model

S8

Aristide T-J. Akem In-network inference with P4: from stateless to hybrid approaches 21/01/2026



Jewel: Hybrid packet-level and flow-level inference

Our approach: single fully joint PL+FL model

min(iat)
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Joint model
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Jewel: Hybrid packet-level and flow-level inference

Our approach: single fully joint PL+FL model

Tralnlng Training Training Training
x1 X1 x1
(- )
Joint model

HOON
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Jewel: Hybrid packet-level and flow-level inference

System overview

Offline Model preparation Controller

Hyper-parametrization Feature engineering Model selection &
P4 build

Hardware optimization

Control plane Flow Update (FU) Memory release !

User plane

Flow management

PL
f :
Flow tracking
foL

FL feats

update
Traffic filtering Early Feature RF
forward tables

0 (collided)

PL
Tton-T Target features

n traffic
n+1to FU

After FU

Joint inference model

D T ——

Class update
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Jewel: Hybrid packet-level and flow-level inference

Evaluation settings

Testbed

« Switch: Edgecore switch with anIntel Tofino BFN-T10-0320 chipset
 Servers: 2DELL servers with AMD EPYC 24-core at 2.8GHz

Use cases
* Intrusion detection: CIC-IDS 2017 dataset (binary)
* |oT device classification: UNSW IoT traces(multiclass)
* |oT bot classification: loT-23 dataset (multiclass)
« |oT cyberattack classification: ToN-loT dataset (multiclass)

Benchmarks

e Packet-level(PL): Mousika[1], Planter[2]
e Flow-level(FL): Flowrest[3]

« Hybrid(PL+FL): NetBeacon[4]

[1] G. Xie et al. Mousika: Enable general in-network intelligence in programmable switches by knowledge distillation. In IEEE INFOCOM, 2022
[2] C. Zheng and N. Zilberman. Planter: Seeding trees within switches. In SIGCOMM Poster Session, 2021

[B]A. Akem et al. Flowrest: Practical flow-level inference in programmable switches with random forests. In /JEEE INFOCOM, 2023.

[4] G. Zhou et al. An efficient design of intelligent network data plane. In USENIX Security, 2023.

Aristide T-J. Akem In-network inference with P4: from stateless to hybrid approaches 21/01/2026



Jewel: Hybrid packet-level and flow-level inference

Results - model accuracy

Mousika Planter Flowrest | NetBeacon Jewel
UNIBS 90.351% | 91.560% | 96.398% 94.570% 98.354 %
UNSW 82.003% | 79.853% | 80.691% 78.594% 87.317 %
ToN-IoT | 27.554% | 70.496% | 73.461% 70.063% 75.703 %
IoT23 86.054% 88.147% | 82.857% 86.076% 91.314 %

Accuracy gains in the range 2.0% - 5.3% over the next best

Aristide T-J. Akem
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Jewel: Hybrid packet-level and flow-level inference

Results — resource usage

Mousika Planter Flowrest NetBeacon Jewel 5
— —-10
X T2 <
§ -207,
Q
— _4_ o
5 ~-305
wn o
: g
: z
S -8 50
© J)
o g
5 —60 G
< -10- ®
g -70 %
< —124 Avg. resources | _go <
TCAM resources

Jewel achieves high accuracy while not increasing resource usage
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In-network inference design trade-offs

Approach Pros Cons

Early decisions, classifies all packets,

Stateless :
low memory footprint

Lower accuracy in complex tasks

Early packets missed, higher memory

Stateful Higher accuracy footprint

Slightly higher complexity, higher memory

Hybrid Higher accuracy, classifies all packets footprint
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Ongoing and future work

= Diversifying inference targets:

* Intel Infrastructure Processing Unit (IPU)
« NVIDIA BlueField-2 Data Processing Unit (DPU)

= Distributed inference in heterogeneous settings:

* Scenarios with multiple models/targets in coordination
* Real-time model drift detection and online learning

= Use cases of in-network inference:

* Healthcare monitoring
« KV cache acceleration, etc
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Conclusions

* In-network ML enables network intelligence at high speed

* Several solutions have been proposed for stateless, stateful, and
hybrid inference

* These solutions lay the foundation for many in-network inference use
cases that will contribute to the automation of network management

* Future work will pursue further steps towards a more seamless
Integration of ML into networked systems
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