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Enabling Portable and High-Performance 
SmartNIC Programs with Alkali
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SmartNIC Trends

Trend 1:Increasing number 
of applications
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Trend 2: Increasing number 
of hardware variants

Intensifies programming 
barriers
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SmartNIC Rich Hardware Parallelism
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Barriers of SmartNIC Programming
#1 Low level parallel programming
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void TCP_offload(pkt e){   
  hdr = parse(e);  
  win_update(hdr, win);
  ack_gen(hdr);  
  dma_write(e);
}

256
RISC-V 

Threads

DMA

MAC

3 Mem Layers

Low-level interfaces: 
DOCA with 500+ MicroC lib functions
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Packet Processing Logic 

Low-Level 
Parallel 

Optimizations

Lines of Code Distribution

Barriers of SmartNIC Programming
#1 Low level parallel programming

Low-level interfaces: 
DOCA with 500+ MicroC lib functions



Barriers of SmartNIC Programming
#2 Non-portability
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BlueField-2FPGA

Verilog (RTL) DPDK + extern libcMicroC with Macros

Agilio

Interfaces:

Architectures:



An Ideal Programming Framework
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Portability & Performance

I don’t need to learn the 
microarchitecture.

Target-agnostic 
Programming Extensible



Alkali: A Multi-Target Compilation Framework for NICs
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Alkali Compiler: Event handler graph αIR 

NIC Arch
Specs

C/Python/P4

#include

Programming: Single 
threaded event processing

FPGA

Agilio

BF2

PANIC

ARM binaries

RISC-V binaries

MicroC

HDL

NIC Backends: Simple code gen

NIC Perf
 Specs

OPT: Auto 
parallelization

BF3 DOCA DPA 
C code

Portability & PerformanceTarget-agnostic 
Programming Extensible



Talk Outline

• Target agonistic programming interfaces

• Event handler graph-based αIR

• Auto parallelization optimization

• Demo and future plan 
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Target Agonistic Programming Interfaces
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• Run-to-completion, single threaded program.
• Process and generate hardware events.

• Import architecture specification, defines supported events.
• Portable if: two NICs have the same arch spec.

# include<agilio_spec.h>
void _net_recv(pkt e){   
  mac_hdr mac = buf_extract(e, 48);  
  tb_update(table1, mac, 1);
  _dma_write(e, 0x8000);
}

void _net_recv(hdr_t hdr,buf_t data){} 
void _dma_write(…){}
void _dma_read(…){}
void _mmio_doorbell(…){}

agilio_spec.h



Talk Outline

• Target agonistic programming interfaces

• Event handler-graph-based αIR

• Auto parallelization optimization

• Demo and future plan 
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MAC DMA

αIR Design
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• A common representation captures parallel execution patterns on NICs.

Type 1: Packet Parallelism

MAC DMA

Type 2: Flow Parallelism

MAC DMA

Type 3: Pipeline Parallelism

Flow1

Flow2

Pros: Maximizes parallelism.
Cons: Requires synchronization 
for state. Pros: No state synchronization. 

Cons: Does not support global state

Pros: Supports global state.
Cons: Communication overhead. 



Express Three Parallelisms: Event Handler Graph  
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Events: 
• Triggers handler’s computation.

Event Handler:
• Code block in a compute unit.
• Can be replicated. 

Persistent State:
• State that persists across events, 

e.g., flow table, counters.

Expressed as a 
Dialect in MLIR

H1

H2 H2

H3

Event Controller:
• Defines event steering and ordering 

rules among handler and its replicas. 



Talk Outline

• Target agonistic programming interfaces

• Event handler-graph-based αIR

• Auto parallelization optimization

• Demo and future plan 
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Search all semantic 
equivalent IR graphs

Auto Parallelization Optimization
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Single Threaded 
Input Best IR graph that runs 

fastest on the target NICs 



16

Pipeline Cutting 
Engines 

Algorithm: Graph Cut

Mapping Engine

Iterative Two-stage Algorithm to Guide the Search

handler (int a){   
  b = a+1;
  c = a+1;
  d = c+b;
  dma_wr(d);
 }

b = a +1
c = a + 1

d=c+b

dma_wr(d)

handler_1(int a){   
  b = a+1; 
  c = a+1;
  gen_event(c, b);}

handler_2(int c, b){   
  d = c+b;
  dma_wr(d);}
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Pipeline Cutting 
Engines 

Algorithm: Graph Cut

Mapping Engine

Iterative Two-stage Algorithm to Guide the Search

handler (int a){   
  b = a+1;
  c = a+1;
  d = c+b;
  dma_wr(d);
 }

b = a +1
c = a + 1

d=c+b

dma_wr(d)

handler_1(int a){   
  b = a+1; 
  c = a+1;
  gen_event(c, b);}

handler_2(int c, b){   
  d = c+b;
  dma_wr(d);}
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Pipeline Cutting 
Engines 

Algorithm: Constraint 
Satisfaction Problem

Algorithm: Graph Cut

Mapping Engine

Iterative Two-stage Algorithm to Guide the Search

handler (int a){   
  b = a+1;
  c = a+1;
  d = c+b;
  dma_wr(d);
 }

b = a +1
c = a + 1

d=c+b

dma_wr(d)

handler_1(int a){   
  b = a+1; 
  c = a+1;
  gen_event(c, b);}

handler_2(int c, b){   
  d = c+b;
  dma_wr(d);}

 

HW 
Constraints

Perf 
Model

SMT Solver

(Comp_Unit_Num, 
Mem_layers, Mem_Size)

Plan

Rank
f(InstrTime(),MemTime(),
     CommTime())
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Pipeline Cutting 
Engines 

Algorithm: Constraint 
Satisfaction Problem

Algorithm: Graph Cut

Mapping Engine

Adding Constraints to Improve Efficiency

Search space 

Search 
algorithm
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Pipeline Cutting 
Engines 

Algorithm: Constraint 
Satisfaction Problem

Algorithm: Graph Cut

Mapping Engine

Adding Constraints to Improve Efficiency

Search space 
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Pipeline Cutting 
Engines 

Algorithm: Constraint 
Satisfaction Problem

Algorithm: Graph Cut

Mapping Engine

Adding Constraints to Improve Efficiency

Search space 

Bad/Incorrect plans



22

Pipeline Cutting 
Engines 

Algorithm: Constraint 
Satisfaction Problem

Algorithm: Graph Cut

Mapping Engine

Adding Constraints to Improve Efficiency

Search space 

Bad/Incorrect plans
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Example of a Bad Pipeline Plan

MAC DMA

Prune this bad plan: pipeline cut should 
avoid splitting state

Read State Update StatePipeline
 Stall

Stage 1 Stage 3Stage 2

Data Hazard



Alkali Framework

• C frontend, compiler
• 20K lines C++ using MLIR
• Compiler opts: peephole, CSE, DCE, copy to 

zero-copy..

• Four NIC backends
• Agilio (on-path SoC): MicroC
• BlueField-2 (off-path SoC): LLVM ARM binary
• Alveo (FPGA) : Verilog RTL
• PANIC (ASIC NIC): LLVM RISCV binary

• Runtime libraries for each NIC
• Event controller
• Inter-compute unit communication queues
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https://github.com/utnslab/Alkali



Alkali Roadmap

Alkali Compiler and IR
(May 2025)

Alkali Runtime and Libraries
(Aug/Sep 2025)
Enable End-to-End flow on
CPU/FPGA targets
dev guides for IR, optimization
and backends
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Feature Development
(Late 2025)
P4 Front/Backend
BF3 DPA Backend
Functional Simulation
…



Alkali Roadmap – P4 Front/Backend

27

P4 Frontend: Integrate with P4 within MLIR ecosystem
- Leverage the P4HIR Project
- Translation as Dialect Conversion

P4 Backend: Transformations for semantically compatible with P4

[P4HIR] https://github.com/p4lang/p4mlir-incubator

https://github.com/p4lang/p4mlir-incubator


Alkali Roadmap

Alkali Compiler and IR
(May 2025)

Alkali Runtime and Libraries
(Aug/Sep 2025)
Enable End-to-End flow on
CPU/FPGA targets
dev guides for IR, optimization
and backends
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Feature Development
(Late 2025)
P4 Front/Backend
BF3 DPA Backend
Functional Simulation
…

Compiler Infrastructure Cleanup:
Compossibility and Extensibility
(Current)



Using Alkali – Compositable Infrastructure
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Alkali Compiler: Event handler graph αIR 

NIC Arch
Specs

C/Python/P4

#include

Programming: Single 
threaded event processing

FPGA

Agilio

BF2 ARM binaries

MicroC

HDL

NIC Perf
 Specs

OPT: Auto 
parallelization

NIC Backends: Simple code gen

P4



Using Alkali – Compositable Infrastructure
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Alkali Compiler: Event handler graph αIR 

NIC Arch
Specs

#include

Programming: Single 
threaded event processing

FPGA

Agilio

BF2 ARM binaries

MicroC

HDL

NIC Backends: Simple code gen
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• Alkali components could be composed for customized flow

C/Python/P4
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Using Alkali – Compositable Infrastructure
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• Alkali components could be composed for customized flow
• Example: Alkali as P4-to-P4 transpiler (pipeline cut)



Using Alkali – Compositable Infrastructure
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NIC Arch
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• Alkali components could be composed for customized flow
• Example: Alkali as P4-to-P4 transpiler (pipeline cut)

Cut P4 Sources



…

Using Alkali – Extensible Infrastructure
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• Alkali IR as interface for optimizations
• Plug ‘n Play for Frontend, Compiler and New Backends extension

C/Python/P4



Conclusion

• Key Idea: Use an intermediate 
representation (IR) to abstract the 
compute parallelism and state access 
patterns of NIC programs.

• Leverage this IR to build a reusable 
compiler framework with optimizations 
that enable automated parallelization.
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https://github.com/utnslab/Alkali
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