
Jiaxin Lin*1, Zhiyuan Guo*2, Mihir Shah1, Tao Ji1, Yiying Zhang2, Daehyeok Kim1 and Aditya Akella1

Enabling Portable and High-Performance
SmartNIC Programs with Alkali

1 2

SmartNIC Trends

Trend 1:Increasing number
of applications

Transport

Msg Process

RSS

IPSec LSO

Middlebox

Net Function

Trend 2: Increasing number
of hardware variants

Intensifies programming
barriers

2

SmartNIC Rich Hardware Parallelism

3

NVIDIA
BlueField-3 DPA

256
RISC-V

Threads

DMA

MAC

3 Mem Layers

Barriers of SmartNIC Programming
#1 Low level parallel programming

4

void TCP_offload(pkt e){
 hdr = parse(e);
 win_update(hdr, win);
 ack_gen(hdr);
 dma_write(e);
}

256
RISC-V

Threads

DMA

MAC

3 Mem Layers

Low-level interfaces:
DOCA with 500+ MicroC lib functions

5

256
RISC-V

Threads

DMA

MAC

3 Mem Layers

Packet Processing Logic

Low-Level
Parallel

Optimizations

Lines of Code Distribution

Barriers of SmartNIC Programming
#1 Low level parallel programming

Low-level interfaces:
DOCA with 500+ MicroC lib functions

Barriers of SmartNIC Programming
#2 Non-portability

6

BlueField-2FPGA

Verilog (RTL) DPDK + extern libcMicroC with Macros

Agilio

Interfaces:

Architectures:

An Ideal Programming Framework

7

Portability & Performance

I don’t need to learn the
microarchitecture.

Target-agnostic
Programming Extensible

Alkali: A Multi-Target Compilation Framework for NICs

8

Alkali Compiler: Event handler graph αIR

NIC Arch
Specs

C/Python/P4

#include

Programming: Single
threaded event processing

FPGA

Agilio

BF2

PANIC

ARM binaries

RISC-V binaries

MicroC

HDL

NIC Backends: Simple code gen

NIC Perf
 Specs

OPT: Auto
parallelization

BF3 DOCA DPA
C code

Portability & PerformanceTarget-agnostic
Programming Extensible

Talk Outline

• Target agonistic programming interfaces

• Event handler graph-based αIR

• Auto parallelization optimization

• Demo and future plan

9

Target Agonistic Programming Interfaces

10

• Run-to-completion, single threaded program.
• Process and generate hardware events.

• Import architecture specification, defines supported events.
• Portable if: two NICs have the same arch spec.

include<agilio_spec.h>
void _net_recv(pkt e){
 mac_hdr mac = buf_extract(e, 48);
 tb_update(table1, mac, 1);
 _dma_write(e, 0x8000);
}

void _net_recv(hdr_t hdr,buf_t data){}
void _dma_write(…){}
void _dma_read(…){}
void _mmio_doorbell(…){}

agilio_spec.h

Talk Outline

• Target agonistic programming interfaces

• Event handler-graph-based αIR

• Auto parallelization optimization

• Demo and future plan

11

MAC DMA

αIR Design

12

• A common representation captures parallel execution patterns on NICs.

Type 1: Packet Parallelism

MAC DMA

Type 2: Flow Parallelism

MAC DMA

Type 3: Pipeline Parallelism

Flow1

Flow2

Pros: Maximizes parallelism.
Cons: Requires synchronization
for state. Pros: No state synchronization.

Cons: Does not support global state

Pros: Supports global state.
Cons: Communication overhead.

Express Three Parallelisms: Event Handler Graph

13

Events:
• Triggers handler’s computation.

Event Handler:
• Code block in a compute unit.
• Can be replicated.

Persistent State:
• State that persists across events,

e.g., flow table, counters.

Expressed as a
Dialect in MLIR

H1

H2 H2

H3

Event Controller:
• Defines event steering and ordering

rules among handler and its replicas.

Talk Outline

• Target agonistic programming interfaces

• Event handler-graph-based αIR

• Auto parallelization optimization

• Demo and future plan

14

Search all semantic
equivalent IR graphs

Auto Parallelization Optimization

15

Single Threaded
Input Best IR graph that runs

fastest on the target NICs

16

Pipeline Cutting
Engines

Algorithm: Graph Cut

Mapping Engine

Iterative Two-stage Algorithm to Guide the Search

handler (int a){
 b = a+1;
 c = a+1;
 d = c+b;
 dma_wr(d);
 }

b = a +1
c = a + 1

d=c+b

dma_wr(d)

handler_1(int a){
 b = a+1;
 c = a+1;
 gen_event(c, b);}

handler_2(int c, b){
 d = c+b;
 dma_wr(d);}

17

Pipeline Cutting
Engines

Algorithm: Graph Cut

Mapping Engine

Iterative Two-stage Algorithm to Guide the Search

handler (int a){
 b = a+1;
 c = a+1;
 d = c+b;
 dma_wr(d);
 }

b = a +1
c = a + 1

d=c+b

dma_wr(d)

handler_1(int a){
 b = a+1;
 c = a+1;
 gen_event(c, b);}

handler_2(int c, b){
 d = c+b;
 dma_wr(d);}

18

Pipeline Cutting
Engines

Algorithm: Constraint
Satisfaction Problem

Algorithm: Graph Cut

Mapping Engine

Iterative Two-stage Algorithm to Guide the Search

handler (int a){
 b = a+1;
 c = a+1;
 d = c+b;
 dma_wr(d);
 }

b = a +1
c = a + 1

d=c+b

dma_wr(d)

handler_1(int a){
 b = a+1;
 c = a+1;
 gen_event(c, b);}

handler_2(int c, b){
 d = c+b;
 dma_wr(d);}

HW
Constraints

Perf
Model

SMT Solver

(Comp_Unit_Num,
Mem_layers, Mem_Size)

Plan

Rank
f(InstrTime(),MemTime(),
 CommTime())

19

Pipeline Cutting
Engines

Algorithm: Constraint
Satisfaction Problem

Algorithm: Graph Cut

Mapping Engine

Adding Constraints to Improve Efficiency

Search space

Search
algorithm

20

Pipeline Cutting
Engines

Algorithm: Constraint
Satisfaction Problem

Algorithm: Graph Cut

Mapping Engine

Adding Constraints to Improve Efficiency

Search space

21

Pipeline Cutting
Engines

Algorithm: Constraint
Satisfaction Problem

Algorithm: Graph Cut

Mapping Engine

Adding Constraints to Improve Efficiency

Search space

Bad/Incorrect plans

22

Pipeline Cutting
Engines

Algorithm: Constraint
Satisfaction Problem

Algorithm: Graph Cut

Mapping Engine

Adding Constraints to Improve Efficiency

Search space

Bad/Incorrect plans

23

Example of a Bad Pipeline Plan

MAC DMA

Prune this bad plan: pipeline cut should
avoid splitting state

Read State Update StatePipeline
 Stall

Stage 1 Stage 3Stage 2

Data Hazard

Alkali Framework

• C frontend, compiler
• 20K lines C++ using MLIR
• Compiler opts: peephole, CSE, DCE, copy to

zero-copy..

• Four NIC backends
• Agilio (on-path SoC): MicroC
• BlueField-2 (off-path SoC): LLVM ARM binary
• Alveo (FPGA) : Verilog RTL
• PANIC (ASIC NIC): LLVM RISCV binary

• Runtime libraries for each NIC
• Event controller
• Inter-compute unit communication queues

25

https://github.com/utnslab/Alkali

Alkali Roadmap

Alkali Compiler and IR
(May 2025)

Alkali Runtime and Libraries
(Aug/Sep 2025)
Enable End-to-End flow on
CPU/FPGA targets
dev guides for IR, optimization
and backends

26

Feature Development
(Late 2025)
P4 Front/Backend
BF3 DPA Backend
Functional Simulation
…

Alkali Roadmap – P4 Front/Backend

27

P4 Frontend: Integrate with P4 within MLIR ecosystem
- Leverage the P4HIR Project
- Translation as Dialect Conversion

P4 Backend: Transformations for semantically compatible with P4

[P4HIR] https://github.com/p4lang/p4mlir-incubator

https://github.com/p4lang/p4mlir-incubator

Alkali Roadmap

Alkali Compiler and IR
(May 2025)

Alkali Runtime and Libraries
(Aug/Sep 2025)
Enable End-to-End flow on
CPU/FPGA targets
dev guides for IR, optimization
and backends

28

Feature Development
(Late 2025)
P4 Front/Backend
BF3 DPA Backend
Functional Simulation
…

Compiler Infrastructure Cleanup:
Compossibility and Extensibility
(Current)

Using Alkali – Compositable Infrastructure

29

Alkali Compiler: Event handler graph αIR

NIC Arch
Specs

C/Python/P4

#include

Programming: Single
threaded event processing

FPGA

Agilio

BF2 ARM binaries

MicroC

HDL

NIC Perf
 Specs

OPT: Auto
parallelization

NIC Backends: Simple code gen

P4

Using Alkali – Compositable Infrastructure

30

Alkali Compiler: Event handler graph αIR

NIC Arch
Specs

#include

Programming: Single
threaded event processing

FPGA

Agilio

BF2 ARM binaries

MicroC

HDL

NIC Backends: Simple code gen

C
on

te
xt

Bu
ffe

riz
at

io
n

C
on

st
an

tF
ol

dP
as

s

Ba
la

nc
ed

C
ut

Pa
ss

Pa
ra

lle
lis

m
M

ap
pi

ng

D
C

EP
as

s

IR
In

st
Se

le
ct

io
n

Pa
ra

lle
lis

m
M

ap
pi

ng

Auto parallelization
Controller

…

• Alkali components could be composed for customized flow

C/Python/P4

P4

Using Alkali – Compositable Infrastructure

31

NIC Arch
Specs

P4

#include

FPGA

Agilio

BF2

P4

ARM binaries

MicroC

HDL

C
on

te
xt

Bu
ffe

riz
at

io
n

C
on

st
an

tF
ol

dP
as

s

Ba
la

nc
ed

C
ut

Pa
ss

Pa
ra

lle
lis

m
M

ap
pi

ng

D
C

EP
as

s

IR
In

st
Se

le
ct

io
n

Pa
ra

lle
lis

m
M

ap
pi

ng

Auto parallelization
Controller

…

• Alkali components could be composed for customized flow
• Example: Alkali as P4-to-P4 transpiler (pipeline cut)

Using Alkali – Compositable Infrastructure

32

NIC Arch
Specs

P4

#include

FPGA

Agilio

BF2

P4

ARM binaries

MicroC

HDL

C
on

te
xt

Bu
ffe

riz
at

io
n

Ba
la

nc
ed

C
ut

Pa
ss

Pa
ra

lle
lis

m
M

ap
pi

ng

D
C

EP
as

s

IR
In

st
Se

le
ct

io
n

alkali-opt -pipeline-handler=“mode=kcut knum=4 target-model=p4"

…

• Alkali components could be composed for customized flow
• Example: Alkali as P4-to-P4 transpiler (pipeline cut)

Cut P4 Sources

…

Using Alkali – Extensible Infrastructure

33

NIC Arch
Specs

#include

FPGA

Agilio

BF2

P4HIR

ARM

MicroC

HDL

C
on

te
xt

Bu
ffe

riz
at

io
n

C
on

st
an

tF
ol

dP
as

s

Ba
la

nc
ed

C
ut

Pa
ss

Pa
ra

lle
lis

m
M

ap
pi

ng

D
C

EP
as

s

IR
In

st
Se

le
ct

io
n

Pa
ra

lle
lis

m
M

ap
pi

ng

LL
V

M
IR

LL
V

M
C

on
ve

rt

BF3 RISCV

P4 Sources

• Alkali IR as interface for optimizations
• Plug ‘n Play for Frontend, Compiler and New Backends extension

C/Python/P4

Conclusion

• Key Idea: Use an intermediate
representation (IR) to abstract the
compute parallelism and state access
patterns of NIC programs.

• Leverage this IR to build a reusable
compiler framework with optimizations
that enable automated parallelization.

34

https://github.com/utnslab/Alkali

	Slide 1
	Slide 2: SmartNIC Trends
	Slide 3: SmartNIC Rich Hardware Parallelism
	Slide 4: Barriers of SmartNIC Programming #1 Low level parallel programming
	Slide 5: Barriers of SmartNIC Programming #1 Low level parallel programming
	Slide 6: Barriers of SmartNIC Programming #2 Non-portability
	Slide 7: An Ideal Programming Framework
	Slide 8: Alkali: A Multi-Target Compilation Framework for NICs
	Slide 9: Talk Outline
	Slide 10: Target Agonistic Programming Interfaces
	Slide 11: Talk Outline
	Slide 12: αIR Design
	Slide 13: Express Three Parallelisms: Event Handler Graph
	Slide 14: Talk Outline
	Slide 15: Auto Parallelization Optimization
	Slide 16: Iterative Two-stage Algorithm to Guide the Search
	Slide 17: Iterative Two-stage Algorithm to Guide the Search
	Slide 18: Iterative Two-stage Algorithm to Guide the Search
	Slide 19: Adding Constraints to Improve Efficiency
	Slide 20: Adding Constraints to Improve Efficiency
	Slide 21: Adding Constraints to Improve Efficiency
	Slide 22: Adding Constraints to Improve Efficiency
	Slide 23: Example of a Bad Pipeline Plan
	Slide 25: Alkali Framework
	Slide 26: Alkali Roadmap
	Slide 27: Alkali Roadmap – P4 Front/Backend
	Slide 28: Alkali Roadmap
	Slide 29: Using Alkali – Compositable Infrastructure
	Slide 30: Using Alkali – Compositable Infrastructure
	Slide 31: Using Alkali – Compositable Infrastructure
	Slide 32: Using Alkali – Compositable Infrastructure
	Slide 33: Using Alkali – Extensible Infrastructure
	Slide 34: Conclusion

