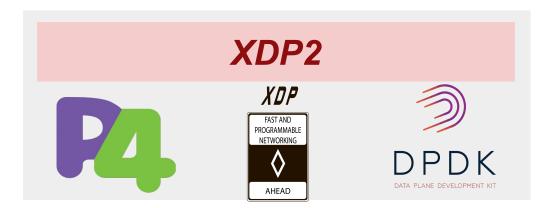


Unifying P4 with eBPF and DPDK via XDP2

Tom Herbert

XDPnet


Tom Herbert

- Founder XDPnet
- Background in host data center networking—Intel, Facebook, Google, Nvidia
- Inventor of several industry transforming technologies including eXpress DataPath (XDP) and a myriad of features in Linux networking
- My blog: medium.com/@tom 84912



XDP2 is the programming model for the datapath

- User writes their datapath in a language that's convenient for them
- Their code compiles into a variety of target
- It's a type of convergence layer

XDP2 + **R**4=

New flexibility, options, and extensibility for users

frontend compiler Intermediate Representation PIR, TIR backend compiler

GUIs/IDEs


```
state parse_tcp {
  packet.extract(headers.tcp);
  local_metadata.l4_sport =
      headers.tcp.sport;
  local_metadata.l4_dport =
      headers.tcp.dport;
  transition accept;
}
```

Modified P4C - - '

Parser IR

{ "name" : "parse tcp", "min-hdr-length": 20, "metadata" : { "ents" : ["name" : "l4_sport", "type": "extract", "md-off": 82, "hdr-src-off": 0, "length": 2 "name": "I4 dport",

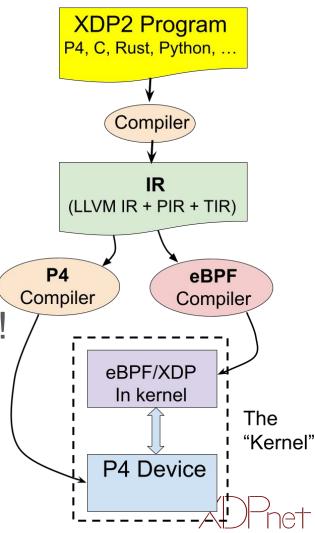
"type": "extract",

"md-off": 4,

"hdr-src-off" : 2,
"length" : 2

XDP-2 compiler

Opportunity: Fixing kernel offloads


- Kernel offloads are a major disappointment
 - Only checksum offload, RSS, TSO are ubiquitous
 - Problem: kernel doesn't trust NIC
- P4TC: valiant effort, but long shot from start
 - o 10K LOC, shunned eBPF

Solution: "P4 in the kernel"

- User write one program
- Compile to XDP/eBPF and P4
 - Run eBPF in kernel
 - Run P4 in device
- Kernel and NIC running same code!
 - Trust can be established
 - Complex offloads are viable
 - Effect: extend kernel to P4 HW

Futures

- XDP2 is on GitHub: xdp2-dev/xdp2
- POC of P4C and backend compilers
- xdp2-dev/p4c: Early development
- Seeking collaborators for "P4 in the kernel"
 - Couple 100 LOC in kernel
 - Everything else compilers outside of kernel

Thank you!

