

Cross-Federated P4 Research Testbed for Wide-Area Programmable Networking Experiments

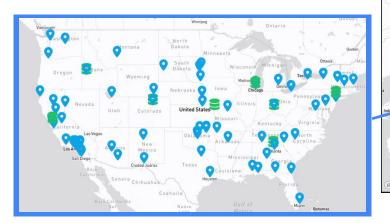
Mohammad Firas Sada
University of California, San Diego
San Diego Supercomputer Center

SAN DIEGO SUPERCOMPUTER CENTER

National Research Platform (NRP)

- The National Research Platform (NRP) is a distributed computing infrastructure designed to support advanced research across multiple disciplines.
- Advanced Hardware: GPUs, FPGAs, SmartNICs...
- Research Focus: Al/ML, networking, scientific computing, and data-intensive research
- A partnership of more than 80 institutions.
- Led by researchers at UC San Diego, University of Nebraska-Lincoln, and MGHPCC.

National Research Platform (NRP)


- Open Access: Available to researchers nationwide.
- Access Inequality: Widening gap between institutions with and without CI resources.
- Architectural Fragmentation: Post-Moore's Law era complicates domain science adoption.
- NRP operates a primary Kubernetes distribution cluster with hardware spanning across 4 continents, called Nautilus

https://dash.nrp-nautilus.io/

NRP operates a primary **Kubernetes** distribution cluster with hardware spanning across **4 continents**, called **Nautilus**

SAN DIEGO SUPERCOMPUTER CENTER

Pacific Wave

- High-performance Internet Exchange connecting U.S. and international R&E institutions for access to large-scale data and instruments.
- **IGROK Nodes Deployment: Seven** 1U servers with **BlueField-2** DPUs (dual 100GbE), enabling packet processing, AI, and HPC applications.
- **CENIC** made the nodes available on **Nautilus** for enhanced global collaboration and real-time data processing.

The **FABRIC Testbed**

- FABRIC = FABRIC is Adaptive ProgrammaBle Research Infrastructure for Computer Science and Science Applications
- International infrastructure for research at scale
- Supports networking, cybersecurity, HPC, VR, ML, 5G, IoT, and more.
- 29 U.S. sites + 4 global sites (Asia, Europe, South America)
- High-speed, programmable network & compute environment
- https://whatisfabric.net

SAN DIEGO SUPERCOMPUTER CENTER

Ampath

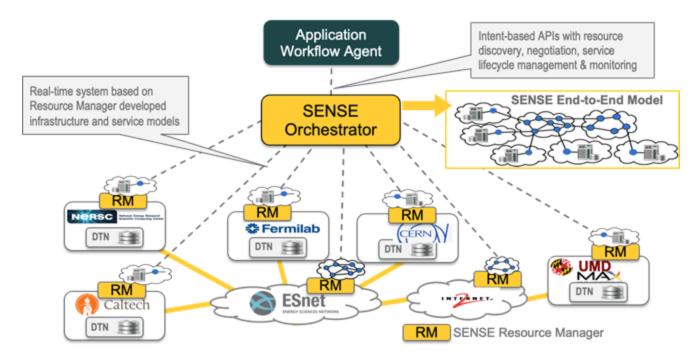
- A high-performance international research connection point facilitating U.S.-Latin America & Caribbean R&E collaboration.
- Developed by Florida International University (FIU),
- NRP & AMPATH: Deployment of SN1000 Xilinx Alveo FPGA on AMPATH, enabling geographically extended FPGA experiments between the U.S., Latin America, and the Caribbean.
- <u>https://ampath.net/</u>



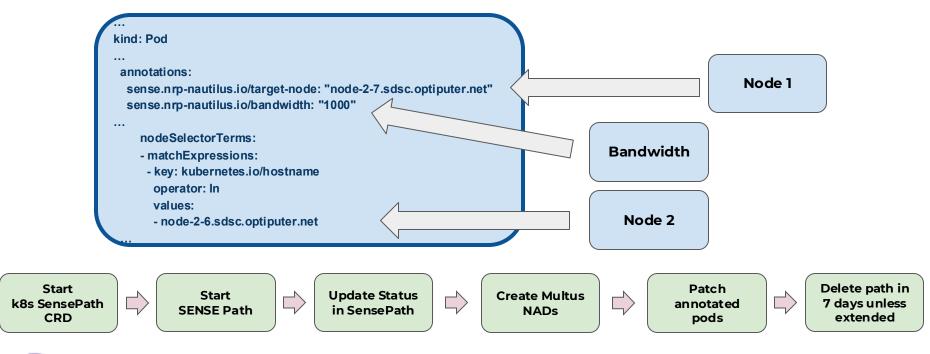
The AutoGole/SENSE Topology

ESnet SENSE

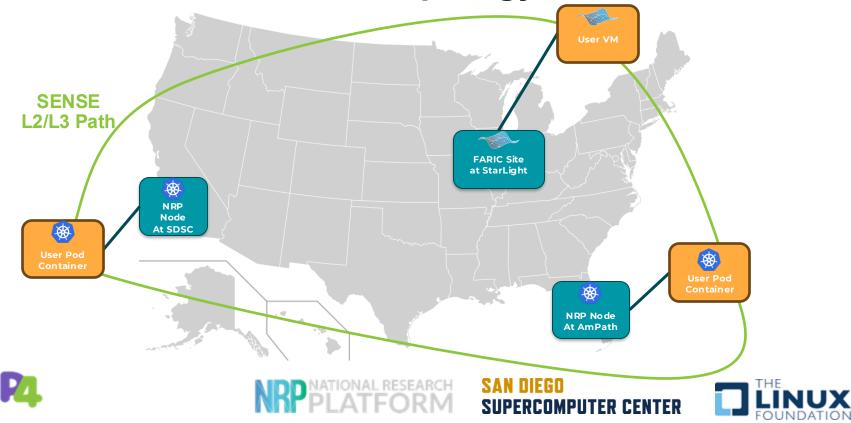
- ESnet (Energy Sciences Network) is a high-performance, high-capacity computer network funded by the U.S. Department of Energy's (DOE) Office of Science.
- Software-Defined Network for End-to-End Networked Science at Exascale
- Network management system designed to provide tailored and reliable network services for scientific applications.
- Offers scalable approach to network management.
- Enables customized end-to-end service provisioning (L2 and L3) across complex and distributed infrastructures.



ESnet SENSE



The K8s SENSE Operator



The AutoGole/SENSE Topology

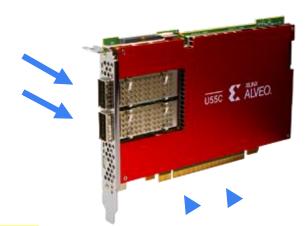
Hardware on NRP

- ARM + x86 64 Nodes
- ~1400 GPUs with various models
 - Good for training most of the ML models
 - 4-8 GPUs / node: can request all of them
 - 550 GB RAM

~600 RTX/GTX "Gaming" GPUs

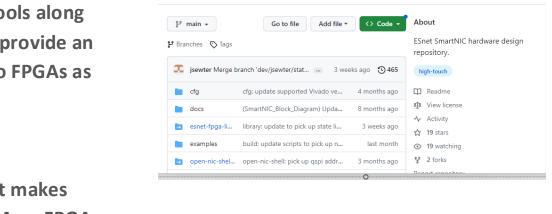
- 8 Qualcomm Cloud AI 100 Ultra Inference
 & Fine-tuning Cards:
 - 1 card = 4 SoCs (System-on-Chip)
 - Each SoC capable of running 25B Param LLM with out-of-the-box config
 - Provisioned via k8s device plugin

P4 Hardware on NRP


- BlueField-2 DPUs:
 - o 7 DPUs at Different sites: San Diego, Guam, Chicago...
 - o 2x100Gbps: ARM CPU + ConnectX-6 Dx
 - Native P4* / DOCA support + DPDK
- Alveo U55C SmartNICs*:
 - 32 FPGAs
 - 2x100Gbps: FPGA + 16GB HBM Memory
 - Uses ESnet SmartNIC framework (AMD OpenNIC Shell P4) + DPDK
 - At SDSC
- Tofino2 Switches

P4 Hardware on FABRIC

- Alveo U280 SmartNICs*:
 - o 28 FPGAs
 - 2x100Gbps: FPGA + 2x 16 DDR4 Memory
 - Uses ESnet SmartNIC framework (AMD OpenNIC Shell P4) + DPDK
 - 1 Card at each site
- Dedicated Tofino2 Switches
- Bluefield3 DPUs + DPDK



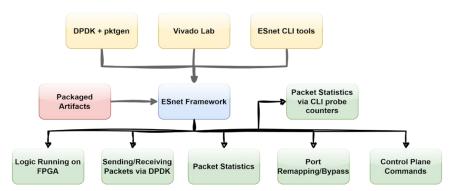
ESnet P4 SmartNIC

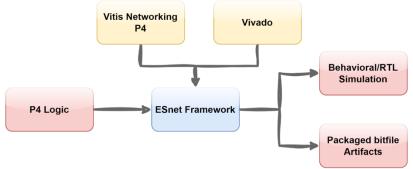
- ESnet SmartNIC framework provides an entire workflow for AMD/Xilinx Alveo FPGAs.
- It is open-source (on github).
- It seamlessly integrates Xilinx tools along with various tools like DPDK to provide an easy way of programming Alveo FPGAs as SmartNICs.
- Various debugging, testing and simulating tools.
- Containerized environment that makes it as easy as plug-and-play for P4 on FPGAs.

esnet / esnet-smartnic-hw

Code 11 Pull requests ① Security

esnet-smartnic-hw Public




Q | + + | O | 11 | A | 11

% Fork 2 → ☆ Star 19 →

Watch 19
 ▼

ESnet P4 SmartNIC

https://docs.nrp.ai/userdocs/fpgas/esnet/

Starting a P4 Testbed

```
Multus NAD Creation Script
Configuration:
 • NAD Name: macvlan-p4-vlan3111
 • VLAN ID: 3111
• IP Range: 192.168.100.0/24
 • Gateway: 192.168.100.1
 • IP Start: 192.168.100.20
 • IP End: 192.168.100.50
Checking kubectl availability...
kubectl command found
 Checking Multus CNI installation...

▼ Multus CNI found

 Creating namespace mfsada...
namespace/mfsada unchanged
Namespace mfsada ready
   Creating NetworkAttachmentDefinition YAML...
  NetworkAttachmentDefinition YAML created: macvlan-nad.yaml
apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
 name: macvlan-p4-vlan3111
namespace: mfsada
   k8s.v1.cni.cncf.io/resourceName: macvlan-p4
 config: |
      "cniVersion": "0.3.1",
      "name": "macvlan-p4-vlan3111",
"type": "macvlan",
      "master": "eth0",
      "mode": "bridge",
"vlan": 3111,
      "ipam": {
       "type": "host-local",
"subnet": "192.168.100.0/24",
        "gateway": "192.168.100.1", "rangeStart": "192.168.100.20".
         "rangeEnd": "192.168.100.50"
Do you want to apply this NetworkAttachmentDefinition? (y/n):
```

```
Generate Pod YAML Script
Configuration:
 · Namespace: mfsada
 • NAD Name: macvlan-p4-vlan3111
 · Node 1: node-2-6.sdsc.optiputer.net
 · Node 2: node-2-7.sdsc.optiputer.net
 · Node 3: node-2-8.sdsc.optiputer.net
  Generating pod YAML files in pod yaml/ directory...
Creating P4 Switch Pod (Node 1) YAML...
  p4-switch-1.vaml created
Creating P4 Switch Pod (Node 2) YAML...
 p4-switch-2.yaml created
Creating P4 Controller Pod YAML...
7 p4-controller.yaml created
Creating Traffic Generator Pod YAML...
  traffic-generator.vaml created
Creating P4 Monitor Pod YAML...
p4-monitor.yaml created
Creating P4 Test Client Pod YAML...
p4-test-client.yaml created
Creating P4 Test Server Pod YAML...

▼ p4-test-server.yaml created

Creating Apply All Pods Script...
 apply_all_pods.sh created
Creating Delete All Pods Script...
delete_all_pods.sh created
Creating README...
README.md created
All pod YAML files generated successfully!
Generated files in pod_yaml/ directory:
 • p4-switch-1.yaml - P4 Switch Pod 1
 • p4-switch-2.yaml - P4 Switch Pod 2
 • p4-controller.vaml - P4 Controller Pod
 • traffic-generator.yaml - Traffic Generator Pod
 . p4-monitor.yaml - P4 Monitor Pod
 • p4-test-client.yaml - P4 Test Client Pod
  • p4-test-server.yaml - P4 Test Server Pod

    apply_all_pods.sh - Script to apply all pods

 • delete_all_pods.sh - Script to delete all pods

    README.md - Documentation and usage
```


Per-Packet Telemetry

Every packet is stripped of its payload and encapsulated with a 64-bit FPGA timestamp, and sent to "workers". Based on ESnet's High Touch model:

- Packet truncation at line rate from Tofino switches
- FPGA accelerated data reduction that can process up to 300Mpps
- FPGA 1ns accuracy time stamping
- Kafka based 24/7 streaming central database
- PCAP capture of any subset of flows

Some use cases:

- Latency Analysis: End-to-end path latency measured via FPGA timestamps (e.g., PacWave-to-FABRIC links).
- Traffic Steering: SRv6 segments route telemetry packets to collector nodes (e.g., CIENA site at exhibitions).
- Trend Analysis and Anomaly Investigation

FPGA Telemetry with SRv6 Encapsulation

Segment Routing (SR):

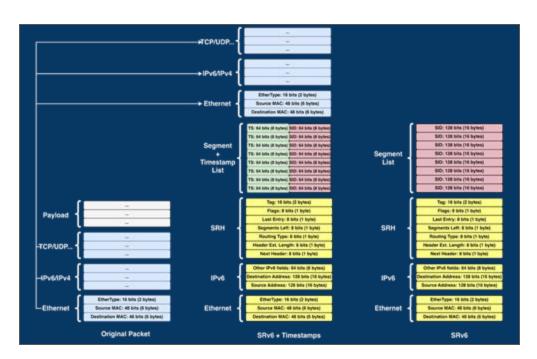
A network routing technique that uses segments (predefined paths) to guide packets through the network, reducing the need for complex stateful routing tables.

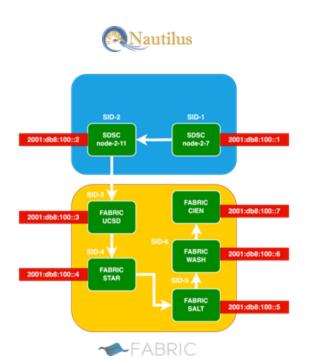
SRv6 (Segment Routing IPv6):

An extension of SR using IPv6 addresses to define routing paths, allowing for more scalable and flexible traffic engineering in modern networks.

Modified SRv6:

- Encapsulated SRv6 Packet
- Segment List: 64-bit Segment ID + 64-bit FPGA timestamp.
- Path: Timestamps preserved end-to-end for latency analysis.
- Original Packet: Retained: Ethernet + IP + Transport headers (payload discarded).
- Payload: Original stripped headers (no application data).



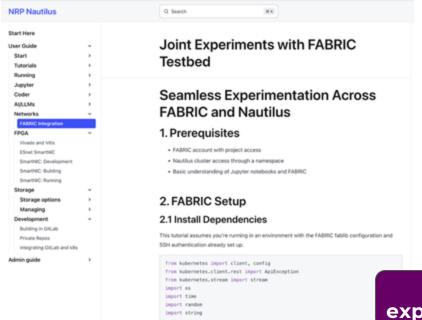


FPGA Telemetry with SRv6 Encapsulation

Real-Time In-Network Machine Learning

"Real-Time In-Network Machine Learning on P4-Programmable FPGA SmartNICs with Fixed-Point Arithmetic and Taylor" (arXiv:2507.00428)

- Fixed-Point Arithmetic + Taylor Series Approximations
 - Convert floating point operations into fixed point
 - o Approximate nonlinear functions (e.g. activation) via Taylor expansions in the data plane
- Separation of Data Plane & Control Plane Roles
 - o Control plane vs data plane stores model parameters (weights, biases) in tables
 - Data plane handles packet flow, feature extraction, and approximate inference logic
- Packet Encapsulation / Inference Embedding
 - Input features carried in packet headers
 - o Inference result embedded in outgoing packet
 - Entire pipeline stays at line rate (minimal extra latency)



Experiments

https://docs.nrp.ai

Reproducibility is the experiments' main objective

Thank you!

The National Research Platform: https://nrp.ai

The FABRIC Testbed: https://whatisfabric.net

Real-time available hardware resources: https://nrp.ai/viz/resources

Training on NRP: https://nrp.ai/training

Running SmartNIC experiments: https://nrp.ai/documentation/userdocs/fpgas/esnet_development/

Community Gitlab: https://gitlab.nrp-nautilus.io/

Matrix chat & community: https://nrp.ai/contact/

ESnet SENSE and Multus: https://nrp.ai/documentation/admindocs/cluster/sense-multus/

SUPERCOMPUTER CFI

Helpful links:

- The National Research Platform: https://nrp.ai/
- Link to join: https://portal.nrp-nautilus.io/
- Real-time available hardware resources: https:portal.nrpnautilus.io/resources
- Running SmartNIC experiments: https://nrp.ai/documentation/userdocs/fpgas/esnet_development/
- Publicly available LLMs: https://nrp.ai/documentation/userdocs/ai/llm-managed/
- Community Gitlab: https://gitlab.nrp-nautilus.io/
- Matrix chat & community: https://nrp.ai/contact/
- ESnet SENSE and Multus: https://nrp.ai/documentation/admindocs/cluster/sense-multus/

https://nrp.ai

