%ﬁ 24 WATERLOO

High-Level and Target-Agnostic
Transport Programs

Mina Tahmasbi Arashloo
University of Waterloo

P4 Workshop 2025

No “one-size-fits-all” transport protocol

—
which data segment to send and when

such that
* Data is reliably delivered to the receiver

Application

Application-layer
(arbitrary-sized) data

* as fast as possible
Transport <t w/o overwhelming the network and receiver

(Paced)
Data segments

Network

(best-effort packet-based)

No “one-size-fits-all” transport protocol

Application

Application-layer
(arbitrary-sized) data

Transport

(Paced)
Data segments

Network

(best-effort packet-based)

‘which data segment to send and when

'

Depends on

* Network characteristics
* Wide area? Data center?
* Applications
* Traffic patterns: small flows? Bursty?
* Requirements: low latency? High throughput?

No “one-size-fits-all” transport protocol

—
TCP and its many many variants
Application QUIC
NDP
Application-layer
(arbitrary-sized) data Homa
RoCEv2
Transport <L

(Paced)
Data segments

Network

(best-effort packet-based)

The transport protocol development cycle today

No high-level specification with well-defined semantics
* Naturallanguage documents > ambiguity

™ * Existing implementations - low-level target-specific code
ick the “right”
protocol/features g
< Implement on
J/ —
your “target”
2l -
Have to grapple with low-level L Optimize 1
protocol-independent issues g .
\ Ensure it works
* /0, memory management, .
optimized data structures, ... L as intended

No high-level specification with well-defined semantics
* |Intended behavior is not always clear

* Pick and choose scenarios to test

* No automated high-coverage analysis and testing

The transport protocol development cycle today

‘ No high-level specification with well-defined semantics ‘

Have to grapple with|low-level

protocol-independent issues

)

No high-level specification with well-defined semantics ‘

The transport protocol development cycle today

Have to grapple with|low-level

protocol-independent issues

‘ No high-level specification with well-defined semantics ‘

-

\ 4

We need a high-level
target-agnostic
protocol-independent
programming interface for transport

*

)

‘ No high-level specification with well-defined semantics ‘

Can’t we use P47

* P4 is the most widely-used high-level network programming language
* ... but for L2/L3 network functionality (i.e., routing and forwarding)

[Packet]
Reassembled
data
App Transport /
request ’
(w/ data) layer \ y
]
[Packet]

Same packet /

{ Timeout]
modified headers ”new” packets
(w/ “new” payloads)

P4 Program

4{ Payload]

[Packet]—-|:([Header s Process ->[Header]

Payload

v
|]]] |]]] |

What should a transport program look like?

[Packet] Transport
Reassembled
\ Program data
App /
request | —)
\ \
|
['[_[Packet]

(w/ data)

[Timeout]

What should a transport program look like?

[Packet] Transport
\ Program
App ‘
request | —)
(w/ data) °°

[Timeout]

Transport events

—
[Packet] —, | Net
event

|
App ' |

request S
(w/ data) \ J

|

. Timer
Timeout —
event

——

Transport
event

|-

Transport
Program

2?2

Transport events

JEENE—— /Specifies what events it expects: \

[Packet] —_— Net event tcp_snd : APP {
event Tran Spo rt uint32 data_size;
_— Progra m addr_t user_buff_addr;
App App Transport -}
request | — event event || eventdefs [, event tcp_data_pkt : NET {
(w/ data) —__ parser defs uint32 seq_num;

q uint32 payload_size;
e addr_t payload_addr;
. — e}
{ Timeout] event

* Specifies how to create events from packets
and app requests

* Syntax similar to other network languagey

Transport events

—
Packet] Net
{ — | event Transport
- Program
App App Transport
request —_ —| event defs
event R
(w/ data) \) parser defs
[.]
Timeout | —
event

Flow contexts

[Packet] —_

App
request —
(w/ data)

. Timer
Timeout —>
event

——

~
[Transport
=

event
J

[

~
Flow

Each flow has some state (or context) that is
* usedinevent processing

* maintained across events

 E.g., sliding window start and end in TCP

~N

context(s)
J

Transport
Program

event defs
parser defs

Each flow has some state (or context) that is

Flow contexts . used in event processing

e maintained across events
 E.g., sliding window start and end in TCP

)
Packet] Net
[Bl - Transport / \
\) Specifies what information to keep in
:. Program
A — | :) : the context.
PP App : | Transport |:
request —_ t event —| eventdefs) context tcp_context {
(w/ data) \ event |- J : | parserdefs | uint32 send_una;
N context defs uint32 send_nxt;
5 : [Flow o uint32 cwnd_size;
imer : e L
; :| context(s) |:
(Timeout] ~ | avens | | (200 } y
4 A

* Each eventis associated with a specific flow

* Programs attach look-up keys to events during parsing
\. y,

Output: ?7?

Transport
Reassembled
Program

data
event defs /

parser defs

context defs \)
» eee L] \
: Packet]

v

r

Output: ?7?

&

~
How do we decouple

protocol logic for reassembly and packet generation
from target-specific implementation details?

J

(Involves performance-sensitive operations: ; Reassembled

 Datamovement
* Buffer management
* Packet pacing

* The most “optimal” implementation is
K target-dependent

data

]
]

Packet]

Transport instructions

r

.

Program specifies what the output should

look like, not how to generate it.

* e.g., the order of data segments with respect

to each other

~

Reassembled
1 data

W, _ [Transport J_» @
parser defs instructions
context defs)
> Target)
1 [-[_[Packet]

(

_

~N

The target follows the instruction to generate the output, in the
most efficient way for that target.

* e.g., copies packet payloads to a buffer and maintains
them in the specified order.

Transport instructions

Abstracts operations
on receive buffers

p—

[Data Reassembly]

Transport
Program

instr.

+| event defs - Transport
parser defs instructions

context defs

Transport instructions — Data Reassembly

Transport instructions
Issued by the program

What the target
should do

new_rx_ordered_data(uid, size[, addr]) * Allocate memory accordingly
* Dynamic allocation?

* | expect to receive size bytes of consecutive data « Pool of buffers?

* size can be INF for byte streams « Zero copy (addr)?

e The identifier for this “unit” is uid

* The data should eventually be available at addr o ,
* Maintain a mapping between

uid and the allocated space

Transport instructions — Data Reassembly

Transport instructions
Issued by the program

add_rx_data_seg(addr, len, uid, offset)

| want len bytes starting from addr to be at index
offset of the consecutive data unit uid

addr > where incoming packet’s payload is stored

What the target
should do

Find the right “destination”
memory locations based on
offset and uid

Copy data from addr

Transport instructions — Data Reassembly

Transport instructions
Issued by the program

rx_flush_and_notify(uid, len, addr)

| want len more bytes from uid to be made
available to the application at addr

addr > user’s buffer address

What the target
should do

Keep track of how far into uid
has been “flushed” to the app

Find the right “source”
memory locations accordingly

Move data to addr

Transport instructions

Transport
Program

+»| event defs
parser defs
context defs

-|

Transport
instructions

e

_

Data Reassembly
instr.

)

J

Vs

|-

Packet generation
instr.

~N

J

Transport instructions — Packet Generation

Transport instructions
Issued by the program

What the target
should do

new_tx_ordered_data(uid, size[, addr])

add_tx_data_seg(addr, len, uid) Allocate memory for uid

tx_flush_and_notify(uid, len) Append app data to uid

Remove data from uid
 Similarto the “rx” counter-parts

 Abstracts operations on send buffers

Transport instructions — Packet Generation

Transport instructions
Issued by the program

What the target
should do

pkt_gen(pkt_bpl[, seg rule id, ...])

Generate the actual packets:

| want packets looking like this blueprint
_ * Allocate packet memory
blueprint:

e header * Fill out headers

* data address and size for payload * Move data for payload

If data does not fit in one packet, segment it:

* Update headers based on seg rule_id

Transport instructions

Transport
Program

event defs
parser defs
context defs

-|

Transport
instructions

|-

e

_

Data reassembly
instr.

)

J

Vs

_

Packet generation
instr.

~N

J

-

_

Packet scheduling
instr.

~N

J

e

Timer instr.

)

From inputs to outputs

[Packet] —_

App
request —
(w/ data)

. Timer
Timeout —>
event

N
: [Transport
-

——

event

[Flow oy

context(s) |:
J =

Transport
Program

event defs
parser defs
context defs

-|

Transport
instructions

|-

e

_

Data reassembly
instr.

)

J

Vs

_

Packet generation
instr.

~N

J

-

Packet scheduling
instr.

~N

J

Timer instr.

)

From inputs to outputs

[Packet] —_

App
request —
(w/ data)

. Timer
Timeout —>
event

.)
: [Transport
=

: -
: Flow oy
:| context(s) |:
" J =

——

event

Transport
Program

event defs
parser defs
context defs
ep func defs
dispatch def

dispatch tcp_dispatch {
tcp_send -> {rec_data, gen_seg};
tcp_ack -> {rto, cong_ctrl,
fast_rtx, gen_seg};
tcp_data_pkt -> {proc_recv, ack};
tcp_timeout -> ...

}...

ﬁ/lapping events to chain of event
processing functions

Packet scheduling

instr.

J

Timer instr.

2

From inputs to outputs

[Packet] —_

App
request —
(w/ data)

. Timer
Timeout —>
event

.)
: [Transport
-

: -
: Flow oy
:| context(s) |:
" J =

——

event

Transport
Program

event defs
parser defs
context defs
ep func defs
dispatch def

ﬁ/lapping events to chain of event
processing functions

dispatch tcp_dispatch {
tcp_send -> {rec_data, gen_seg};
tcp_ack -> {rto, cong_ctrl,
fast_rtx, gen_seg};
tcp_data_pkt -> {proc_recv, ack};
tcp_timeout -> ...

}...

Packet scheduling
instr.

J

Event processing functions:
« Simple & C-like:

* Bounded loops

* No pointers
* Update context

\- Issue instructions

N —

Modular Transport Programming (MTP)

MTP Program
// decl. // main
event{...} main(){
context{...} register_ep_chains(...); > . D.eploy .
ev_proc. {...} register_ctx(...); (light-weight compiler)
dispatch{...}
seg rule{...} }
data and notif to App.
App. requests 1
Reassem. instr. RX Data
. events Translated event '|_reassembly
A loglcal > Event Parsers : > processing [ogic E ------------------- -d ------------ é----;l-:----------s- ---------- E
: look-up : from the MTP program Ixdata || Fending eg.
nl;:l?l'?bel of an : l keys : Prog : instr. TX data rules
target : .
Flow relevant ; timer : timer instr. E e | |
Contexts state Timers ¢ : . Pkt
: : events : w/ pkt of Pkt > :
S EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES i blueprint -] O gen' SChed. :
A 4
Incoming pkts

outgoing pkts

Modular Transport Programming (MTP)

MTP Program
// decl. // main
event{...} main(){
context{...} register_ep_chains(...);
ev_proc.{...} register_ctx(...);
dispatch{...}

seg rule{...} }

\ 4

Deploy

(Llight-weight compiler)

A logical
model of an
MTP target

App. requests

data and notif to App.

a

/

blueprint

................................ Reassen. ins RX Data
event Translated event eassembly
: Event Parsers : processinglogic AEEEEEEEEEEEEEEEEEEEEEEEEEEEN EEEEEEEEEEEER -----S- ----------
look-up from the MTP program I eg-
keys instr. rules
Flow relevant| :
: timer . timer Instr, : pkt. gen. instr.
Contexts state Timers [« ; P8 Pkt
events w/ pkt)

Incoming pkts

v

outgoing pkts

ExpreSSiveneSS [Ultra Ethernet Transportin MTP?]

Short-term future work

Stream-based
v TCP * Applications append data to byte streams to be sent

. TCP: one per connection
v QUIC-Lite cpere .
* QUIC-Lite: multiple parallel ones per connection

* Sender-side congestion control

v Homa Message-based
v NDP - * Application message size is known (e.g., RPC)
J « Receiver-driven

* Message-based

v" RoCEVv2

Queue pairs as “connections”
* Designed for hardware

What about performance?

Observation:

Existing protocol implementations already know how to do
transport tasks efficiently in a specific execution environment

* e.g., buffer management, packet I/O, per-flow state tracking, ...

We can “refactor” them to expose these tasks via MTP’s high-
level unifying interface.

MTP-compliant targets offer comparable performance

* MTP-DPDK and MTP-XDP

* Refactored an existing TCP implementations over DPDK/XDP
* mICP (NSDI’14) and elran (NSDI’25)

* Toimplement MTP’s API
* TCP over MTP targets has comparable performance

* [tis possible to swap in other protocols!
« Homa and QUIC-Lite Wil

throughput (Gbps)
L -

= o 8
e T
m
| (MTP-XDP) (eTran)

* See paper for
* Each target’s implementation details e il I
* Experiment details e e
* And plots! L. 5

MImmssy . =
AMM IS HY

o 4 R s 255
sssssssssssssssssssssss
ggggggggggggg
sssssss

Takeaways from implementing MTP targets

* MTP’s APl is at the right level of abstraction

* abstracts away enough details to be target-agnostic
* implementable with already existing efficient mechanisms

* Different targets’ impl. of transport tasks vary in non-trivial ways
* Confirmed our decision to abstract them as instructions

* The heavy lifting is in implementing the instructions
* Abstract away most of the complexity

* Translating the event chains can be done with a light-weight compiler

Reduction in development effort

MTP Programs TCP 753 LoC
Target-independent Homa 1205 LoC
Written once QUIC-Lite 920 LoC

MTP-Compliant Targets
Protocol-independent
Developed once per target

MTP-DPDK 15,593 LoC
MTP-XDP 14,837 LoC

e

AUtOm ated dana lyS|S MTP event processing chain

for TCP acks

.

Light-weight

* MTP programs are amenable to
automated analysis

* Constrained C-like language ¢
Property from TCP A C program with

RFC as assertion symbolic inputs

transformations

* no pointers
* Bounded loops

e Constrained data structures \
* target-agnostic instructions hiding KLEE Symbolic
Executor

low-level details
|

Test case for each path
One path violated the property
Bug in our original MTP program

A shout-out to the team!

Pedro Mizuno Kimiya Mohammadtaheri Linfan Qian _ Joshua Johnson
UWaterloo UWaterloo UWaterloo UWaterloo UWaterloo

F
& ‘

Chris Neely Mario Baldi Nachiket Kapre ~ Mina Tahmasbi Arashloo
AMD NVIDIA UWaterloo UWaterloo

Summary and looking forward

* Transport protocols will continue to evolve

e Their execution environments will continue to evolve

* Software: Kernel, Kernel-bypass, eBPF
* Hardware accelerators

* This diversity calls for a language abstraction that is high-level, target-
agnostic, and protocol-independent ...

 MTP takes a significant step in this direction.

* ...that can unlock a myriad of benefits:

* Seamlessly swapping in new protocols and add features on a target
Automated functional and performance verification

Automated testing

Write-once run-anywhere

	Slide 1: High-Level and Target-Agnostic Transport Programs
	Slide 2: No “one-size-fits-all” transport protocol
	Slide 3: No “one-size-fits-all” transport protocol
	Slide 4: No “one-size-fits-all” transport protocol
	Slide 5: The transport protocol development cycle today
	Slide 6: The transport protocol development cycle today
	Slide 7: The transport protocol development cycle today
	Slide 8: Can’t we use P4?
	Slide 9: What should a transport program look like?
	Slide 10: What should a transport program look like?
	Slide 11: Transport events
	Slide 12: Transport events
	Slide 13: Transport events
	Slide 14: Flow contexts
	Slide 15: Flow contexts
	Slide 16: Output: ??
	Slide 17: Output: ??
	Slide 18: Transport instructions
	Slide 19: Transport instructions
	Slide 20: Transport instructions – Data Reassembly
	Slide 21: Transport instructions – Data Reassembly
	Slide 22: Transport instructions – Data Reassembly
	Slide 23: Transport instructions
	Slide 24: Transport instructions – Packet Generation
	Slide 25: Transport instructions – Packet Generation
	Slide 26: Transport instructions
	Slide 27: From inputs to outputs
	Slide 28: From inputs to outputs
	Slide 29: From inputs to outputs
	Slide 31: Modular Transport Programming (MTP)
	Slide 32: Modular Transport Programming (MTP)
	Slide 33: Expressiveness
	Slide 34: What about performance?
	Slide 35: MTP-compliant targets offer comparable performance
	Slide 36: Takeaways from implementing MTP targets
	Slide 37: Reduction in development effort
	Slide 38: Automated analysis
	Slide 39: A shout-out to the team!
	Slide 40: Summary and looking forward

