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No “one-size-fits-all” transport protocol
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which data segment to send and when 
such that
• Data is reliably delivered to the receiver
• as fast as possible
• w/o overwhelming the network and receiver
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Depends on 
• Network characteristics

• Wide area? Data center? 

• Applications
• Traffic patterns: small flows? Bursty?
• Requirements: low latency? High throughput?



No “one-size-fits-all” transport protocol
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The transport protocol development cycle today

Ensure it works 
as intended

Pick the “right” 
protocol/features

Optimize🫠
Implement on 
your “target”

No high-level specification with well-defined semantics
• Natural language documents  → ambiguity
• Existing implementations → low-level target-specific code

No high-level specification with well-defined semantics
• Intended behavior is not always clear
• Pick and choose scenarios to test
• No automated high-coverage analysis and testing

Have to grapple with low-level 
protocol-independent issues
• I/O, memory management, 

optimized data structures, …
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No high-level specification with well-defined semantics
• Natural language documents  → ambiguity
• Existing implementations → low-level target-specific code

No high-level specification with well-defined semantics
• Intended behavior is not always clear
• Pick and choose scenarios to test
• No automated high-coverage analysis and testing

Have to grapple with low-level 
protocol-independent issues
• I/O, memory management, 

optimized data structures, …

We need a high-level
target-agnostic

protocol-independent 
programming interface for transport



Can’t we use P4?

• P4 is the most widely-used high-level network programming language
• … but for L2/L3 network functionality (i.e., routing and forwarding)
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What should a transport program look like? 
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Transport events
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event tcp_snd : APP {
   uint32 data_size;
   addr_t user_buff_addr;
   ...}

event tcp_data_pkt : NET {
   uint32 seq_num;
   uint32 payload_size;
   addr_t payload_addr;
   ...}

• Specifies what events it expects:

• Specifies how to create events from packets 
and app requests

• Syntax similar to other network languages

event defs
parser defs
…
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Flow contexts
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Each flow has some state (or context) that is
• used in event processing
• maintained across events
• E.g., sliding window start and end in TCP

Flow 
context(s)



Flow contexts
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Each flow has some state (or context) that is
• used in event processing
• maintained across events
• E.g., sliding window start and end in TCP

• Specifies what information to keep in 
the context.

context tcp_context {
   uint32 send_una;
   uint32 send_nxt;
   uint32 cwnd_size;
   ...
}

Flow 
context(s)

• Each event is associated with a specific flow
• Programs attach look-up keys to events during parsing
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How do we decouple 
protocol logic for reassembly and packet generation 
from target-specific implementation details? 

• Involves performance-sensitive operations:
• Data movement
• Buffer management
• Packet pacing
• …

• The most “optimal” implementation is 
target-dependent 
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Transport 
instructions

Target

Program specifies what the output should 
look like, not how to generate it.
• e.g., the order of data segments with respect 

to each other

The target follows the instruction to generate the output, in the 
most efficient way for that target.
• e.g., copies packet payloads to a buffer and maintains 

them in the specified order.

Transport instructions
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Transport instructions – Data Reassembly

Transport instructions 
issued by the program

What the target 
should do

new_rx_ordered_data(uid, size[, addr])

• I expect to receive size bytes of consecutive data
• size can be INF for byte streams

• The identifier for this “unit” is uid
• The data should eventually be available at addr

• Allocate memory accordingly

• Dynamic allocation?
• Pool of buffers?
• Zero copy (addr)?
• …

• Maintain a mapping between 
uid and the allocated space



Transport instructions – Data Reassembly

Transport instructions 
issued by the program

What the target 
should do

add_rx_data_seg(addr, len, uid, offset)

• I want len bytes starting from addr  to be at index 
offset of the consecutive data unit uid
• addr → where incoming packet’s payload is stored

• Find the right “destination” 
memory locations based on 
offset and uid

• Copy data from addr



Transport instructions – Data Reassembly

Transport instructions 
issued by the program

What the target 
should do

rx_flush_and_notify(uid, len, addr)

• I want len more bytes from uid to be made 
available to the application at addr
• addr → user’s buffer address

• Keep track of how far into uid 
has been “flushed” to the app

• Find the right “source” 
memory locations accordingly

• Move data to addr
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Transport instructions – Packet Generation

Transport instructions 
issued by the program

What the target 
should do

new_tx_ordered_data(uid, size[, addr])

add_tx_data_seg(addr, len, uid)

tx_flush_and_notify(uid, len)

• Similar to the “rx” counter-parts
• Abstracts operations on send buffers

• Allocate memory for uid

• Append app data to uid

• Remove data from uid

• …



Transport instructions – Packet Generation

Transport instructions 
issued by the program

What the target 
should do

pkt_gen(pkt_bp[, seg_rule_id, ...])

• I want packets looking like this blueprint
• blueprint:

•  header 
• data address and size for payload

• If data does not fit in one packet, segment it:
• Update headers based on seg_rule_id

Generate the actual packets:

• Allocate packet memory

• Fill out headers

• Move data for payload

• …
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Mapping events to chain of event 
  processing functions

dispatch tcp_dispatch {
  tcp_send -> {rec_data , gen_seg};
  tcp_ack  -> {rto , cong_ctrl ,   
               fast_rtx, gen_seg};
  tcp_data_pkt -> {proc_recv, ack};
  tcp_timeout  -> ...
  ...
}



Transport 
Program

Transport 
event

Packet

App 
request 

(w/ data)

Timeout

Net 
event

App 
event

Timer 
event

event defs
parser defs
context defs
ep func defs
dispatch def
…

Flow 
context(s)

Transport 
instructions

From inputs to outputs

Data reassembly 
instr.

Packet generation 
instr.

Packet scheduling 
instr.

Timer instr.

…

Event processing functions: 
• Simple & C-like:

• Bounded loops
• No pointers

• Update context
• Issue instructions

Mapping events to chain of event 
  processing functions

dispatch tcp_dispatch {
  tcp_send -> {rec_data , gen_seg};
  tcp_ack  -> {rto , cong_ctrl ,   
               fast_rtx, gen_seg};
  tcp_data_pkt -> {proc_recv, ack};
  tcp_timeout  -> ...
  ...
}



Modular Transport Programming (MTP)

// decl.
event {...}
context{...}
ev_proc. {...}
dispatch {...}
seg_rule {...}
…

MTP Program 
// main
main(){
register_ep_chains(...);
register_ctx(...);
…
}
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Deploy
 (light-weight compiler)
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Expressiveness

✓  TCP
✓  QUIC-Lite

✓  Homa
✓  NDP

✓  RoCEv2

• Stream-based
• Applications append data to byte streams to be sent
• TCP: one per connection
• QUIC-Lite: multiple parallel ones per connection

• Sender-side congestion control

• Message-based
• Application message size is known (e.g., RPC)

• Receiver-driven 

• Message-based
• Queue pairs as “connections”
• Designed for hardware

Ultra Ethernet Transport in MTP?
Short-term future work



What about performance?

Observation:

Existing protocol implementations already know how to do 
transport tasks efficiently in a specific execution environment
• e.g., buffer management, packet I/O, per-flow state tracking, …

We can “refactor” them to expose these tasks via MTP’s high-
level unifying interface.



• MTP-DPDK and MTP-XDP
• Refactored an existing TCP implementations over DPDK/XDP

• mTCP (NSDI’14) and eTran (NSDI’25)
• To implement MTP’s API

• TCP over MTP targets has comparable performance
• It is possible to swap in other protocols!

• Homa and QUIC-Lite 

• See paper for 
• Each target’s implementation details
• Experiment details
• And plots!

32KB message QUIC-Lite TCP

avg. latency 3.4ms 20.1ms

tail latency 5.8ms 28.8ms

MTP-compliant targets offer comparable performance

Metric Hom a 
(MTP-XDP)

Hom a 
(eTra n)

32B message 
avg. latency

8.45us 8.29 us

1MB message 
thro ughp ut

19.75 Gbp s 20.52 Gbp s



Takeaways from implementing MTP targets

• MTP’s API is at the right level of abstraction 
• abstracts away enough details to be target-agnostic
• implementable with already existing efficient mechanisms

• Different targets’ impl. of transport tasks vary in non-trivial ways
• Confirmed our decision to abstract them as instructions

• The heavy lifting is in implementing the instructions
• Abstract away most of the complexity

• Translating the event chains can be done with a light-weight compiler



Reduction in development effort

MTP Programs
Target-independent

Written once

MTP-Compliant Targets
Protocol-independent

Developed once per target

TCP

Homa

QUIC-Lite

753 LoC

1205 LoC

920 LoC

MTP-DPDK

MTP-XDP

15,593 LoC

14,837 LoC



Automated analysis

• MTP programs are amenable to 
automated analysis
• Constrained C-like language 

• no pointers
• Bounded loops
• Constrained data structures

• target-agnostic instructions hiding 
low-level details

MTP event processing chain
 for TCP acks

Light-weight 
transformations

A C program with 
symbolic inputs 

KLEE Symbolic 
Executor

Property from TCP 
RFC as assertion

Test case for each path
One path violated the property

Bug in our original MTP program
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Summary and looking forward
• Transport protocols will continue to evolve
• Their execution environments will continue to evolve

• Software: Kernel, Kernel-bypass, eBPF
• Hardware accelerators

• This diversity calls for a language abstraction that is high-level, target-
agnostic, and protocol-independent …

• MTP takes a significant step in this direction.

• ... that can unlock a myriad of benefits:
• Seamlessly swapping in new protocols and add features on a target
• Automated functional and performance verification
• Automated testing
• Write-once run-anywhere
• ….
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