
High-Level and Target-Agnostic 
Transport Programs

Mina Tahmasbi Arashloo
University of Waterloo

P4 Workshop 2025

High-Level and Target-Agnostic Transport Programs



No “one-size-fits-all” transport protocol

Application

Network
(best-effort packet-based)

Transport

Application-layer 
(arbitrary-sized) data

(Paced)
Data segments

which data segment to send and when 
such that
• Data is reliably delivered to the receiver
• as fast as possible
• w/o overwhelming the network and receiver



No “one-size-fits-all” transport protocol

Application

Network
(best-effort packet-based)

Transport

Application-layer 
(arbitrary-sized) data

(Paced)
Data segments

which data segment to send and when 
such that
• Data is reliably delivered to the receiver
• as fast as possible
• w/o overwhelming the network and receiver

Depends on 
• Network characteristics

• Wide area? Data center? 

• Applications
• Traffic patterns: small flows? Bursty?
• Requirements: low latency? High throughput?



No “one-size-fits-all” transport protocol

Application

Network
(best-effort packet-based)

Transport

Application-layer 
(arbitrary-sized) data

(Paced)
Data segments

TCP and its many many variants
QUIC
NDP
Homa
RoCEv2
…



The transport protocol development cycle today

Ensure it works 
as intended

Pick the “right” 
protocol/features

Optimize🫠
Implement on 
your “target”

No high-level specification with well-defined semantics
• Natural language documents  → ambiguity
• Existing implementations → low-level target-specific code

No high-level specification with well-defined semantics
• Intended behavior is not always clear
• Pick and choose scenarios to test
• No automated high-coverage analysis and testing

Have to grapple with low-level 
protocol-independent issues
• I/O, memory management, 

optimized data structures, …



The transport protocol development cycle today

Ensure it works 
as intended

Pick the “right” 
protocol/features

Optimize🫠
Implement on 
your “target”

No high-level specification with well-defined semantics
• Natural language documents  → ambiguity
• Existing implementations → low-level target-specific code

No high-level specification with well-defined semantics
• Intended behavior is not always clear
• Pick and choose scenarios to test
• No automated high-coverage analysis and testing

Have to grapple with low-level 
protocol-independent issues
• I/O, memory management, 

optimized data structures, …



The transport protocol development cycle today

Ensure it works 
as intended

Pick the “right” 
protocol/features

Optimize🫠
Implement on 
your “target”

No high-level specification with well-defined semantics
• Natural language documents  → ambiguity
• Existing implementations → low-level target-specific code

No high-level specification with well-defined semantics
• Intended behavior is not always clear
• Pick and choose scenarios to test
• No automated high-coverage analysis and testing

Have to grapple with low-level 
protocol-independent issues
• I/O, memory management, 

optimized data structures, …

We need a high-level
target-agnostic

protocol-independent 
programming interface for transport



Can’t we use P4?

• P4 is the most widely-used high-level network programming language
• … but for L2/L3 network functionality (i.e., routing and forwarding)

P4 Program

Packet Header Process

Payload

Header

Payload

Transport 
layer

Same packet
modified headers

Packet

App 
request 

(w/ data)

Timeout

”new” packets
(w/ “new” payloads)

Reassembled 
data

Packet
Packet

Packet



What should a transport program look like? 

Transport 
Program

??

Packet

App 
request 

(w/ data)

Timeout

Reassembled 
data

Packet
Packet

Packet



What should a transport program look like? 

Transport 
Program

??

Packet

App 
request 

(w/ data)

Timeout

Reassembled 
data

Packet
Packet

Packet



Transport events

Transport 
Program

??

Reassembled 
data

Packet
Packet

Packet

Transport 
event

Packet

App 
request 

(w/ data)

Timeout

Net 
event

App 
event

Timer 
event



Transport events

Transport 
Program Reassembled 

data

Packet
Packet

Packet

Transport 
event

Packet

App 
request 

(w/ data)

Timeout

Net 
event

App 
event

Timer 
event

event tcp_snd : APP {
   uint32 data_size;
   addr_t user_buff_addr;
   ...}

event tcp_data_pkt : NET {
   uint32 seq_num;
   uint32 payload_size;
   addr_t payload_addr;
   ...}

• Specifies what events it expects:

• Specifies how to create events from packets 
and app requests

• Syntax similar to other network languages

event defs
parser defs
…



Transport events

Transport 
Program Reassembled 

data

Packet
Packet

Packet

Transport 
event

Packet

App 
request 

(w/ data)

Timeout

Net 
event

App 
event

Timer 
event

event defs
parser defs
…



Flow contexts

Transport 
Program Reassembled 

data

Packet
Packet

Packet

Transport 
event

Packet

App 
request 

(w/ data)

Timeout

Net 
event

App 
event

Timer 
event

event defs
parser defs
…

Each flow has some state (or context) that is
• used in event processing
• maintained across events
• E.g., sliding window start and end in TCP

Flow 
context(s)



Flow contexts

Transport 
Program Reassembled 

data

Packet
Packet

Packet

Transport 
event

Packet

App 
request 

(w/ data)

Timeout

Net 
event

App 
event

Timer 
event

event defs
parser defs
context defs
…

Each flow has some state (or context) that is
• used in event processing
• maintained across events
• E.g., sliding window start and end in TCP

• Specifies what information to keep in 
the context.

context tcp_context {
   uint32 send_una;
   uint32 send_nxt;
   uint32 cwnd_size;
   ...
}

Flow 
context(s)

• Each event is associated with a specific flow
• Programs attach look-up keys to events during parsing



Output: ??

Transport 
Program Reassembled 

data

Packet
Packet

Packet

Transport 
event

Packet

App 
request 

(w/ data)

Timeout

Net 
event

App 
event

Timer 
event

event defs
parser defs
context defs
…Flow 

context(s)



Output: ??

Transport 
Program Reassembled 

data

Packet
Packet

Packet

Transport 
event

Packet

App 
request 

(w/ data)

Timeout

Net 
event

App 
event

Timer 
event

event defs
parser defs
context defs
…Flow 

context(s)

How do we decouple 
protocol logic for reassembly and packet generation 
from target-specific implementation details? 

• Involves performance-sensitive operations:
• Data movement
• Buffer management
• Packet pacing
• …

• The most “optimal” implementation is 
target-dependent 



Transport 
Program Reassembled 

data

Packet
Packet

Packet

Transport 
event

Packet

App 
request 

(w/ data)

Timeout

Net 
event

App 
event

Timer 
event

event defs
parser defs
context defs
…Flow 

context(s)

Transport 
instructions

Target

Program specifies what the output should 
look like, not how to generate it.
• e.g., the order of data segments with respect 

to each other

The target follows the instruction to generate the output, in the 
most efficient way for that target.
• e.g., copies packet payloads to a buffer and maintains 

them in the specified order.

Transport instructions



Transport 
Program

Transport 
event

Packet

App 
request 

(w/ data)

Timeout

Net 
event

App 
event

Timer 
event

event defs
parser defs
context defs
…Flow 

context(s)

Transport 
instructions

Transport instructions

Data Reassembly 
instr.

Abstracts operations 
on receive buffers



Transport instructions – Data Reassembly

Transport instructions 
issued by the program

What the target 
should do

new_rx_ordered_data(uid, size[, addr])

• I expect to receive size bytes of consecutive data
• size can be INF for byte streams

• The identifier for this “unit” is uid
• The data should eventually be available at addr

• Allocate memory accordingly

• Dynamic allocation?
• Pool of buffers?
• Zero copy (addr)?
• …

• Maintain a mapping between 
uid and the allocated space



Transport instructions – Data Reassembly

Transport instructions 
issued by the program

What the target 
should do

add_rx_data_seg(addr, len, uid, offset)

• I want len bytes starting from addr  to be at index 
offset of the consecutive data unit uid
• addr → where incoming packet’s payload is stored

• Find the right “destination” 
memory locations based on 
offset and uid

• Copy data from addr



Transport instructions – Data Reassembly

Transport instructions 
issued by the program

What the target 
should do

rx_flush_and_notify(uid, len, addr)

• I want len more bytes from uid to be made 
available to the application at addr
• addr → user’s buffer address

• Keep track of how far into uid 
has been “flushed” to the app

• Find the right “source” 
memory locations accordingly

• Move data to addr



Transport 
Program

Transport 
event

Packet

App 
request 

(w/ data)

Timeout

Net 
event

App 
event

Timer 
event

event defs
parser defs
context defs
…Flow 

context(s)

Transport 
instructions

Transport instructions

Data Reassembly 
instr.

Packet generation 
instr.



Transport instructions – Packet Generation

Transport instructions 
issued by the program

What the target 
should do

new_tx_ordered_data(uid, size[, addr])

add_tx_data_seg(addr, len, uid)

tx_flush_and_notify(uid, len)

• Similar to the “rx” counter-parts
• Abstracts operations on send buffers

• Allocate memory for uid

• Append app data to uid

• Remove data from uid

• …



Transport instructions – Packet Generation

Transport instructions 
issued by the program

What the target 
should do

pkt_gen(pkt_bp[, seg_rule_id, ...])

• I want packets looking like this blueprint
• blueprint:

•  header 
• data address and size for payload

• If data does not fit in one packet, segment it:
• Update headers based on seg_rule_id

Generate the actual packets:

• Allocate packet memory

• Fill out headers

• Move data for payload

• …



Transport 
Program

Transport 
event

Packet

App 
request 

(w/ data)

Timeout

Net 
event

App 
event

Timer 
event

event defs
parser defs
context defs
…Flow 

context(s)

Transport 
instructions

Transport instructions

Data reassembly 
instr.

Packet generation 
instr.

Packet scheduling 
instr.

Timer instr.

…



Transport 
Program

Transport 
event

Packet

App 
request 

(w/ data)

Timeout

Net 
event

App 
event

Timer 
event

event defs
parser defs
context defs
…Flow 

context(s)

Transport 
instructions

From inputs to outputs

Data reassembly 
instr.

Packet generation 
instr.

Packet scheduling 
instr.

Timer instr.

…



Transport 
Program

Transport 
event

Packet

App 
request 

(w/ data)

Timeout

Net 
event

App 
event

Timer 
event

event defs
parser defs
context defs
ep func defs
dispatch def
…

Flow 
context(s)

Transport 
instructions

From inputs to outputs

Data reassembly 
instr.

Packet generation 
instr.

Packet scheduling 
instr.

Timer instr.

…

Mapping events to chain of event 
  processing functions

dispatch tcp_dispatch {
  tcp_send -> {rec_data , gen_seg};
  tcp_ack  -> {rto , cong_ctrl ,   
               fast_rtx, gen_seg};
  tcp_data_pkt -> {proc_recv, ack};
  tcp_timeout  -> ...
  ...
}



Transport 
Program

Transport 
event

Packet

App 
request 

(w/ data)

Timeout

Net 
event

App 
event

Timer 
event

event defs
parser defs
context defs
ep func defs
dispatch def
…

Flow 
context(s)

Transport 
instructions

From inputs to outputs

Data reassembly 
instr.

Packet generation 
instr.

Packet scheduling 
instr.

Timer instr.

…

Event processing functions: 
• Simple & C-like:

• Bounded loops
• No pointers

• Update context
• Issue instructions

Mapping events to chain of event 
  processing functions

dispatch tcp_dispatch {
  tcp_send -> {rec_data , gen_seg};
  tcp_ack  -> {rto , cong_ctrl ,   
               fast_rtx, gen_seg};
  tcp_data_pkt -> {proc_recv, ack};
  tcp_timeout  -> ...
  ...
}



Modular Transport Programming (MTP)

// decl.
event {...}
context{...}
ev_proc. {...}
dispatch {...}
seg_rule {...}
…

MTP Program 
// main
main(){
register_ep_chains(...);
register_ctx(...);
…
}

Flow 
Contexts

Translated event 
processing logic 

from the MTP program

RX Data 
reassembly 

Timers

Pending 
TX data

Seg. 
rules

Pkt. gen.
Pkt. 

Sched.

timer instr. timer 
events

look-up 
keys

relevant 
state

Reassem. instr.

pkt. gen. instr. 
w/ pkt 

blueprint

tx data 
instr.

Event Parsers
events

Incoming pkts

A logical 
model of an 
MTP target

data and notif to App.

outgoing pkts

App. requests

Deploy
 (light-weight compiler)



Modular Transport Programming (MTP)

// decl.
event {...}
context{...}
ev_proc. {...}
dispatch {...}
seg_rule {...}
…

MTP Program 
// main
main(){
register_ep_chains(...);
register_ctx(...);
…
}

Flow 
Contexts

Translated event 
processing logic 

from the MTP program

RX Data 
reassembly 

Timers

Pending 
TX data

Seg. 
rules

Pkt. gen.
Pkt. 

Sched.

timer instr. timer 
events

look-up 
keys

relevant 
state

Reassem. instr.

pkt. gen. instr. 
w/ pkt 

blueprint

tx data 
instr.

Event Parsers
events

Incoming pkts

A logical 
model of an 
MTP target

data and notif to App.

outgoing pkts

App. requests

Deploy
 (light-weight compiler)



Expressiveness

✓  TCP
✓  QUIC-Lite

✓  Homa
✓  NDP

✓  RoCEv2

• Stream-based
• Applications append data to byte streams to be sent
• TCP: one per connection
• QUIC-Lite: multiple parallel ones per connection

• Sender-side congestion control

• Message-based
• Application message size is known (e.g., RPC)

• Receiver-driven 

• Message-based
• Queue pairs as “connections”
• Designed for hardware

Ultra Ethernet Transport in MTP?
Short-term future work



What about performance?

Observation:

Existing protocol implementations already know how to do 
transport tasks efficiently in a specific execution environment
• e.g., buffer management, packet I/O, per-flow state tracking, …

We can “refactor” them to expose these tasks via MTP’s high-
level unifying interface.



• MTP-DPDK and MTP-XDP
• Refactored an existing TCP implementations over DPDK/XDP

• mTCP (NSDI’14) and eTran (NSDI’25)
• To implement MTP’s API

• TCP over MTP targets has comparable performance
• It is possible to swap in other protocols!

• Homa and QUIC-Lite 

• See paper for 
• Each target’s implementation details
• Experiment details
• And plots!

32KB message QUIC-Lite TCP

avg. latency 3.4ms 20.1ms

tail latency 5.8ms 28.8ms

MTP-compliant targets offer comparable performance

Metric Hom a 
(MTP-XDP)

Hom a 
(eTra n)

32B message 
avg. latency

8.45us 8.29 us

1MB message 
thro ughp ut

19.75 Gbp s 20.52 Gbp s



Takeaways from implementing MTP targets

• MTP’s API is at the right level of abstraction 
• abstracts away enough details to be target-agnostic
• implementable with already existing efficient mechanisms

• Different targets’ impl. of transport tasks vary in non-trivial ways
• Confirmed our decision to abstract them as instructions

• The heavy lifting is in implementing the instructions
• Abstract away most of the complexity

• Translating the event chains can be done with a light-weight compiler



Reduction in development effort

MTP Programs
Target-independent

Written once

MTP-Compliant Targets
Protocol-independent

Developed once per target

TCP

Homa

QUIC-Lite

753 LoC

1205 LoC

920 LoC

MTP-DPDK

MTP-XDP

15,593 LoC

14,837 LoC



Automated analysis

• MTP programs are amenable to 
automated analysis
• Constrained C-like language 

• no pointers
• Bounded loops
• Constrained data structures

• target-agnostic instructions hiding 
low-level details

MTP event processing chain
 for TCP acks

Light-weight 
transformations

A C program with 
symbolic inputs 

KLEE Symbolic 
Executor

Property from TCP 
RFC as assertion

Test case for each path
One path violated the property

Bug in our original MTP program



A shout-out to the team!

Pedro Mizuno
UWaterloo

Linfan Qian
UWaterloo

Joshua Johnson
UWaterloo

Danny Akbarzadeh
UWaterloo

Kimiya Mohammadtaheri
UWaterloo

Chris Neely
AMD

Mario Baldi
NVIDIA

Nachiket Kapre
UWaterloo

Mina Tahmasbi Arashloo
UWaterloo



Summary and looking forward
• Transport protocols will continue to evolve
• Their execution environments will continue to evolve

• Software: Kernel, Kernel-bypass, eBPF
• Hardware accelerators

• This diversity calls for a language abstraction that is high-level, target-
agnostic, and protocol-independent …

• MTP takes a significant step in this direction.

• ... that can unlock a myriad of benefits:
• Seamlessly swapping in new protocols and add features on a target
• Automated functional and performance verification
• Automated testing
• Write-once run-anywhere
• ….


	Slide 1: High-Level and Target-Agnostic Transport Programs
	Slide 2: No “one-size-fits-all” transport protocol
	Slide 3: No “one-size-fits-all” transport protocol
	Slide 4: No “one-size-fits-all” transport protocol
	Slide 5: The transport protocol development cycle today
	Slide 6: The transport protocol development cycle today
	Slide 7: The transport protocol development cycle today
	Slide 8: Can’t we use P4?
	Slide 9: What should a transport program look like? 
	Slide 10: What should a transport program look like? 
	Slide 11: Transport events
	Slide 12: Transport events
	Slide 13: Transport events
	Slide 14: Flow contexts
	Slide 15: Flow contexts
	Slide 16: Output: ??
	Slide 17: Output: ??
	Slide 18: Transport instructions
	Slide 19: Transport instructions
	Slide 20: Transport instructions – Data Reassembly
	Slide 21: Transport instructions – Data Reassembly
	Slide 22: Transport instructions – Data Reassembly
	Slide 23: Transport instructions
	Slide 24: Transport instructions – Packet Generation
	Slide 25: Transport instructions – Packet Generation
	Slide 26: Transport instructions
	Slide 27: From inputs to outputs
	Slide 28: From inputs to outputs
	Slide 29: From inputs to outputs
	Slide 31: Modular Transport Programming (MTP)
	Slide 32: Modular Transport Programming (MTP)
	Slide 33: Expressiveness
	Slide 34: What about performance?
	Slide 35: MTP-compliant targets offer comparable performance
	Slide 36: Takeaways from implementing MTP targets
	Slide 37: Reduction in development effort
	Slide 38: Automated analysis
	Slide 39: A shout-out to the team!
	Slide 40: Summary and looking forward

