
From Semantics to Software:
Building a Verification Ecosystem for 

P4 using HOL4P4

Didrik Lundberg1,2

P4 Developer Days, September 25 2025
1KTH Royal Institute of Technology 2Saab AB



Overview

● Formal Verification
● HOL4P4
● Related Work
● Future Work and Conclusions



Formal Verification



● Replaces testing with logical reasoning
● Requires a formal model

Formal Verification

Testing vs. Formal Verification

⋮ ⋮



Interactive Theorem Proving

● What is a theorem?



● What is a theorem?

Interactive Theorem Proving

Axiom Axiom Axiom Axiom

Rule 
applications

Theorem



● What is a theorem?
● TCB consists of

○ Formal model
○ Proof-checking mechanism

Interactive Theorem Proving

Only valid proofs allowed



● What is a theorem?
● TCB consists of

○ Formal model
○ Proof-checking mechanism

Interactive Theorem Proving



Working with an ITP

● Automation is key



Working with an ITP

● Automation is key
● High assurance over bug-finding



HOL4P4



HOL4P4 Overview

A formalisation of P4 using the ITP HOL4.

● Syntax
● Import tool
● Semantics
● Metatheory



HOL4P4 Overview

A formalisation of P4 using the ITP HOL4.

● Syntax
● Import tool
● Semantics
● Metatheory

For more details:



HOL4P4 Overview

A model of P4 formalised in the ITP HOL4.

● Syntax
● Import tool
● Semantics
● Metatheory

Verification toolbox



HOL4P4 Syntax: Expressions



HOL4P4 Syntax: Statements



HOL4P4 Semantics

Arch semantics

Frame semantics

Statement semantics

Expression semantics



HOL4P4 State

Top level:



Heapless State

h.src h.dst x

AAAA AAAA 1

h.src h.dst x

loc1 loc2 loc3

AAAA

1

Heapless memory Heap-based memory



HOL4P4 State

❌ ❌Statement level:

Expression level: Only reduces e, may push new 𝚽



HOL4P4 Import Tool

Petr4[1] HOL4
JSON Parser

HOL4P4 
Transformation

[1] Doenges, Ryan, et al. "Petr4: formal foundations for p4 data planes." POPL (2021)

Type-checks program Validated to obey 
IETF standard

In-lining, desugaring



HOL4P4 Metatheory: Type System Guarantees
Type preservation

Progress



Symbolic Execution

● Scope: any functional properties
○ “If P, then code successfully executes and Q holds afterward”
○ “If ingress port is n, and source MAC address is a, then egress port is not m”
○ Can refer to tables, extern data, …

● Can overapproximate externs and tables
● Fully proof-producing
● Supports V1Model



Symbolic Executor: Usage

1. Import P4 program
2. Modify initial state and arguments to symbolic executor
3. Provide pre- and postcondition
4. Run!
5. (If proof fails: tweak the internal reasoning)
6. (If proof takes too long: break up into multiple proofs)



Symbolic Executor: Examples

● Test suite for simple properties
● Basic IPSec program
● Larger industry applications



Symbolic Executor: Benchmarks

● LoC<100, branches<5: seconds
● LoC<1000, branches<20: ~15 minutes
● LoC<10000, branches<20 per block: must be split up, 1-2 hours

Work in progress



● Uses CakeML
● Compiles the HOL4P4 semantics
● CakeML wrapper for system calls
● Supports V1Model and eBPF

Verified Compilation to SW Switch



HOL4P4 SW Switch: Usage

1. Import P4 program
2. Modify initial state to contain desired tables et.c.
3. Compile!



HOL4P4 SW Switch: Examples

● fabric_border_router.p4 (~3000 LoC)
● vss-example.p4
● Some smaller examples



HOL4P4 SW Switch: Benchmarks

● Slower than BMv2, faster than petr4 [CAV ‘21]
● vss-example.p4: ~20 Mbps throughput, 1.5 ms latency
● fabric_border_router.p4: ~2 Mbps throughput, 16.5 ms latency
● Experiments show direct compilation could beat BMv2



Symbolic Execution + Verified Compilation

How can these tools be used together?

● Verified compiler preserves SE guarantees
● SE optimizes program before compilation



Related Work



Related Work

● Petr4 [POPL ‘21]
○ Later formalized in Rocq
○ Heap-based semantics
○ No verification tool



Related Work

● Petr4 [POPL ‘21]
○ Later formalized in Rocq
○ Heap-based semantics
○ No verification tool

● Verifiable P4 [ITP ‘23]
○ More similar to HOL4P4
○ More details in Qinshi Wang’s and Mengying Pan’s theses
○ 2024 preprint presents complete verification toolbox



Future Work and Conclusions



Future Work: P4ncake

Pancake:

● C-like systems language
● Has verified compiler
● Verified device drivers for LionsOS

P4+Pancake=P4ncake

Direct compilation faster than interpreting



Future Work: Verified Control Plane

● HOL4P4 semantics designed for interleaving
● Enables proofs about DP+CP interplay
● Enables software switch with dynamic control plane

HOL4P4 Data Plane HOL4P4 Data Plane

Static Table Configuration HOL4P4 Control Plane

Current solution Future solution



Conclusions

You’ve learned:

● How to minimize TCB with theorem proving
● How the HOL4P4 symbolic executor can be used
● How the HOL4P4 software switch can be used
● How to compare HOL4P4 to related work



Questions?


