From Semantics to Software:

Building a Verification Ecosystem for
P4 using HOL4P4

Didrik Lundberg!?

P4 Developer Days, September 25 2025
'KTH Royal Institute of Technology *Saab AB

Overview

Formal Verification
HOL4P4

Related Work
Future Work and Conclusions

Formal Verification

Formal Verification

e Replaces testing with logical reasoning
e Requires a formal model

Interactive Theorem Proving

e \Whatis a theorem?

Interactive Theorem Proving

Theorem

Rule —
applications

Axiom Axiom Axiom Axiom

e \Whatis a theorem?

Interactive Theorem Proving

e \Whatis a theorem?

e TCB consists of

o Formal model
o Proof-checking mechanism

&

Only valid proofs allowed

Interactive Theorem Proving

e \Whatis a theorem?

e TCB consists of

o Formal model
o Proof-checking mechanism

Working with an ITP

e Automation is key

Working with an ITP

e Automation is key
e High assurance over bug-finding

HOL4P4

HOL4P4 Overview

A formalisation of P4 using the ITP HOL4.

Syntax
Import tool
Semantics
Metatheory

HOL4P4 Overview

A formalisation of P4 using the ITP HOL4.

Syntax
Import tool
Semantics
Metatheory

For more details:

HOL4P4: Mechanized
Small-Step Semantics for P4

Anoud Didrik Roberto Mads
Alshnakat Lundberg Guanciale Dam
OOPSLA

..’%)v v
SPLASH

HOL4P4 Overview

A model of P4 formalised in the ITP HOLA.

Syntax

Import tool
Semantics > Verification toolbox
Metatheory

HOL4P4 Syntax: Expressions

e =V value
| var variable
| ©e unary operation
ler ® ez binary operation
le[b:D] slicing
| e.f field access
| f(et1s....en) function call
| select e {vq:st1;...; vn:Stn} st select
l(ﬁ:e1;...;ﬁ1:en) struct

(cast)e cast

HOL4P4 Syntax: Statements

5 =i} | lv:=e | if ethenselses’ |returne | 558

| transitione | apply tbl e1,...en, | ® | {Eae sl BnsTn '8 }

HOL4P4 Semantics

Arch semantics

~~

Frame semantics

<~

Statement semantics

~

Expression semantics

HOL4P4 State

Top level: (io, a, i,¥G, d, 1)

Heapless State

Heapless memory

h.src

h.dst

Heap-based memory

v
AAAA

AAAA

— <X

h.src h.dst X
\
loc1 loc2 loc3
/. J
/ /

AAAA

\/

HOL4P4 State

Statement level: (3, &)X VG, d, 1)

Expression level: Only reduces e, may push new ®

HOL4P4 Import Tool

Petral]

)

Type-checks program

HOL4
JSON Parser

)

Validated to obey
|ETF standard

HOL4P4
Transformation

[1] Doenges, Ryan, et al. "Petr4: formal foundations for p4 data planes." POPL (2021)

In-lining, desugaring

HOL4P4 Metatheory: Type System Guarantees

Type preservation

st:TA(Erstwwst’) = st':T

Progress

st:T = (E+ st w st’) V final(st)

Symbolic Execution

e Scope: any functional properties
o “If P, then code successfully executes and Q holds afterward”
o “Ifingress portis n, and source MAC address is a, then egress port is not m”
o (Can refer to tables, extern data, ...

e (Can overapproximate externs and tables
e Fully proof-producing
e Supports VIModel

Symbolic Executor: Usage

Import P4 program

Modify initial state and arguments to symbolic executor
Provide pre- and postcondition

Run!

(If proof fails: tweak the internal reasoning)

(If proof takes too long: break up into multiple proofs)

O U HA WN =

Symbolic Executor: Examples

e Test suite for simple properties
e Basic IPSec program
e Largerindustry applications

Symbolic Executor: Benchmarks

e L 0C<100, branches<5: seconds
e [0C<1000, branches<20: ~15 minutes
e | 0C<10000, branches<20 per block: must be split up, 1-2 hours

Work in progress

Verified Compilation to SW Switch

Uses CakeML
Compiles the HOL4P4 semantics

CakeML wrapper for system calls m

Supports VIModel and eBPF

HOL4P4 SW Switch: Usage

1. Import P4 program
2. Modify initial state to contain desired tables et.c.
3. Compile!

HOL4P4 SW Switch: Examples

e fabric_border_router.p4 (~3000 LoC)
e Vss-example.p4
e Some smaller examples

HOL4P4 SW Switch: Benchmarks

Slower than BMv2, faster than petr4 [CAV 21]
vss-example.p4: ~20 Mbps throughput, 1.5 ms latency
fabric_border_router.p4: ~2 Mbps throughput, 16.5 ms latency
Experiments show direct compilation could beat BMv2

Symbolic Execution + Verified Compilation

How can these tools be used together?

e \Verified compiler preserves SE guarantees
e SE optimizes program before compilation

Related Work

Related Work

e Petr4 [POPL 21]

o Later formalized in Rocq
o Heap-based semantics
o No verification tool

Related Work

e Petr4 [POPL 21]

o Later formalized in Rocq
o Heap-based semantics
o No verification tool

e \Verifiable P4 [ITP 23]
o More similar to HOL4P4
o More details in Qinshi Wang's and Mengying Pan’s theses
o 2024 preprint presents complete verification toolbox

Future Work and Conclusions

Future Work: P4ncake

Pancake:

e (-like systems language
e Has verified compiler
e \erified device drivers for LionsOS

P4+Pancake=P4ncake

Direct compilation faster than interpreting

Future Work: Verified Control Plane

e HOL4P4 semantics designed for interleaving
e Enables proofs about DP+CP interplay
e Enables software switch with dynamic control plane

Static Table Configuration HOL4P4 Control Plane

HOL4P4 Data Plane > HOL4P4 Data Plane

Current solution Future solution

Conclusions

You've learned:

How to minimize TCB with theorem proving
How the HOL4P4 symbolic executor can be used

How the HOL4P4 software switch can be used
How to compare HOL4P4 to related work

Questions?

