P f

i i
A PR S €,

Detecting Stragglers in Programmable Data Plane

20/08/2025

i | A:‘ " /f///// |
& /'/ ‘ Z :

Riz Maulana, Habib Mostafaei, Nirvana Meratnia s

o [S |
* b 3 N

Zi o

|| = <

IRIS Cluster, Department of Mathematics & Computer Science

q»

EINDHOVEN
UNIVERSITY OF
TECHNOLOGY

Flow scheduler 42 VB

Goal: minimize flow completion time (FCT). llllll .
* Prioritizing small flows over larger flows.

24 KB
Types of flow scheduler
Clairvoyant Non-clairvoyant
* Requires detailed flow information e Operates with limited flow information
* pFabric [1], pHost [2], Homa [3] * PIAS [4], Qclimb [5]

2 Detecting Stragglers in Programmable Data Plane TU/e

What can go wrong?

Prioritizing certain flows -> push others into lower priority queues.
 Accumulate longer waiting times.

Straggler: a packet with unexpectedly higher queueing delay
compared to other packets from the same flow.

Straggler is well-studied in system community.
Tasks that run much slower than other tasks in the same job.

Detecting Stragglers in Programmable Data Plane

TU/e

Stragglers in network flows

 Example: PIAS Scheduling.
e Basicidea: Prioritize small flows.
e Initially, put the flow in highest priority queue.

* Gradually demote the flow the lower priority queue. Demotion threshold:
Queue 1 2 pkts per flow per queue

Incoming packets

U8B0 Ea0en S

Straggler
Queue 3

4 Detecting Stragglers in Programmable Data Plane TU/e

Queueing delay distribution

300 Measure queueing delay in hardware switch.

N * PIAS 8 queues
2 T T T T T T « CAIDA traces (2016).
i 200 1
&
S .
E) 150 1
(]
3 100 . . .
E * High priority queues -> lower queueing

50 1 delay.

N T * Demotion to lower priority queue ->
0 1 2 3 4 5 6 7 higher queueing delay.
Queue ID

5 Detecting Stragglers in Programmable Data Plane TU/e

The need for straggler detection

* Provide insights into flow scheduler behavior.
e Diagnose or troubleshoot the flow scheduler.

* Leverage granular visibility of programmable data plane.

6 Detecting Stragglers in Programmable Data Plane

TU/e

Contribution

* Propose StragFlow, a tool for detecting stragglers.

* A new perspective in queue monitoring.
* Previous works: identifying the root cause of the issue.
 ConQuest [6]: which flows occupy the most space in a queue?
* PrintQueue [7]: which flows (directly/indirectly) cause high queueing delay?

[* StragFlow: identifying the victims of the issue.]

7 Detecting Stragglers in Programmable Data Plane

TU/e

StragFlow components

Programmable data plane

Detection - Count - Reporting

* Limitation of programmable data plane:
* Nofloating point

* Tens of MB memory

* Pipelined architecture

* Limited number of stages

8 Detecting Stragglers in Programmable Data Plane TU/e

StragFlow: detection

Threshold
* Set a static threshold to detect stragglers

Moving average
* Flexible threshold

* A gradual change in latency may slowly drift the average
* Eventually making it less sensitive to emerging stragglers

Compare with previous (highest) queueing delay
» Keep track of the delay history
* No global threshold

9 Detecting Stragglers in Programmable Data Plane

TU/e

StragFlow: counting stragglers

10

Use a compact, collision-tolerant data structure.

Count-min sketch (CMS)

Insertion (current queueing delay > previous (highest) queueing delay)

L~

Flow |~ | H,

ID

H, ——o— +1 | 0 | 0o | O
n [a) a) N N +1
© 6 6 +1 0 0

Hash functions

Detecting Stragglers in Programmable Data Plane

Arrays of counters

TU/e

StragFlow: reporting stragglers

* Naive approach: reports all stragglers.
* Will flood the control plane.

Control plane

* Send only necessary info (message digest).
 How to avoid flooding the control plane?

Low bandwidth
-V

Reports

Incoming traffic

—>

Outgoing traffic

—>

Data plane

11 Detecting Stragglers in Programmable Data Plane TU/e

Reducing report rates

Accumulates the count until sending threshold.

When reaching the sending threshold:
e Send the count to control plane

* Reset the count to 0. Small sending threshold
Sending threshold: 5 Pros:
* Detect stragglers in small flows
* Many small counter
Z(F'Ow'd' 5) » Lower probability of hash collision

o 9 2|1 4 o ,
* Might miss some stragglers
EMS

12 Detecting Stragglers in Programmable Data Plane TU/e

StragFlow: Overall detection mechanism

Delay register

- Write c_delay Control plane

: A
E Update E Send reports

-
-
-

-
-

Read .-
A

Get previous Get current the counter

delay p_delay delay c_delay

Flow id

Packet—>»{Hash

Forward |e—— Straggler counter

13 Detecting Stragglers in Programmable Data Plane TU/e

Evaluation

Goal:
e Detect stragglers when using different scheduling mechanisms.

* 8-queue PIAS vs 1-queue FIFO.

SetUp: ol plems Ingress Egress
bandwidth bandwidth

Reports
Congested 1 Gbps 0.8 Gbps
Traffic Tofino
replayer programmable Balanced 1 Gbps 1 Gbps
i itch
iienal ok >VEC Uncongested 1 Gbps 1.2 Gbps

Dataset: CAIDA network traces (> 30M packets)

14 Detecting Stragglers in Programmable Data Plane TU/e

Evaluation: straggler detection

v 40000
[}
Eg 29862 30034 29046
o 30000
e 22306
O 19024
o 20000 15988
z
g 10000
= 0
Congested Balanced Uncongested

FIFO HPIAS

* PIAS has fewer stragglers than FIFO
* Prioritizing small flows mitigates queueing delays more effectively than a FIFO
queue.

15 Detecting Stragglers in Programmable Data Plane TU/e

Evaluation: traffic pattern on queue-level
(8-queue PIAS)

Congested Uncongested
15000 14448 8000 6862
6000
10000
4000 2744 7616
5000 4078
1610 503 4eq <05 2000 . . 1228 o0 S 1310
260 132
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
B Queue ID B Queue ID

* Congested queues might indicate misconfiguration or need readjustment.

16 Detecting Stragglers in Programmable Data Plane TU/e

Evaluation: resource consumption

Resource type Resource consumption*

Match crossbars 7.29%

cateway 5-33% StragFlow fits comfortably
Hash bits 7.53% within the programmable
SRAM 12.92% data plane.

TCAM 0%

Stateful ALU 0%

Number of stages 6 out of 12

*Including other functions such as forwarding and PIAS scheduling.

17 Detecting Stragglers in Programmable Data Plane TU/e

Conclusion

18

Flow schedulers can cause stragglers.

Proposed StragFlow: a tool for detecting stragglers.
Instead of identifying the root cause, StragFlow shifts the focus to detecting the
victims.
Operates efficiently in programmable switches.
Effectively identifies stragglers and reveals insights into how scheduling policies
impact flow performance.

Detecting Stragglers in Programmable Data Plane

TU/e

Thank you

19 Detecting Stragglers in Programmable Data Plane

Reference

[1] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker, “pfabric: minimal near-optimal
datacenter transport,” ser. SIGCOMM ‘13, 2013.

[2] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and S. Shenker, “phost: distributed near-optimal datacenter
transport over commodity network fabric,” ser. CONEXT ‘15, 2015.

[3] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: a receiverdriven low-latency transport protocol using
network priorities,” ser. SIGCOMM 18, 2018, p. 221-235.

[4] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Information-Agnostic flow scheduling for commodity data
centers,” in NSDI ’15, Oakland, CA, May 2015, pp. 455—-468.

[5] W. Li, X. He, Y. Liu, K. Li, K. Chen, Z. Ge, Z. Guan, H. Qi, S. Zhang, and G. Liu, “Flow scheduling with imprecise
knowledge,” in NSDI ‘24, 2024.

[6] X. Chen, S. L. Feibish, Y. Koral, J. Rexford, O. Rottenstreich, S. A. Monetti, and T.-Y. Wang, “Fine-grained queue
measurement in the data plane,” in CONEXT 19, 2019, p. 15-29.

[7]Y. Lei, L. Yu, V. Liu, and M. Xu, “Printqueue: Performance diagnosis via queue measurement in the data plane,” ser.
SIGCOMM 22, 2022, p. 516-529.

20 Detecting Stragglers in Programmable Data Plane

	Default Section
	Slide 1: Detecting Stragglers in Programmable Data Plane

	Untitled Section
	Slide 2: Flow scheduler
	Slide 3: What can go wrong?
	Slide 4: Stragglers in network flows
	Slide 5: Queueing delay distribution
	Slide 6: The need for straggler detection
	Slide 7: Contribution
	Slide 8: StragFlow components
	Slide 9: StragFlow: detection
	Slide 10: StragFlow: counting stragglers
	Slide 11: StragFlow: reporting stragglers
	Slide 12: Reducing report rates
	Slide 13: StragFlow: Overall detection mechanism
	Slide 14: Evaluation
	Slide 15: Evaluation: straggler detection
	Slide 16: Evaluation: traffic pattern on queue-level (8-queue PIAS)
	Slide 17: Evaluation: resource consumption
	Slide 18: Conclusion
	Slide 19: Thank you
	Slide 20: Reference

