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Flow scheduler
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Types of flow scheduler

Clairvoyant
• Requires detailed flow information
• pFabric [1], pHost [2], Homa [3]

Non-clairvoyant
• Operates with limited flow information
• PIAS [4], Qclimb [5]

Goal: minimize flow completion time (FCT).
• Prioritizing small flows over larger flows.
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What can go wrong?

• Prioritizing certain flows -> push others into lower priority queues. 
• Accumulate longer waiting times.

• Straggler: a packet with unexpectedly higher queueing delay
compared to other packets from the same flow.

• Straggler is well-studied in system community.
• Tasks that run much slower  than other tasks in the same job.
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Stragglers in network flows
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• Example: PIAS Scheduling.
• Basic idea: Prioritize small flows.
• Initially, put the flow in highest priority queue.
• Gradually demote the flow the lower priority queue.

Queue 1

Queue 2

Queue 3

321 1 1 1 12 23

Straggler

Incoming packets

Demotion threshold: 
2 pkts per flow per queue



Queueing delay distribution
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Measure queueing delay in hardware switch.
• PIAS 8 queues
• CAIDA traces (2016).

• High priority queues -> lower queueing 
delay.

• Demotion to lower priority queue -> 
higher queueing delay.



The need for straggler detection

• Provide insights into flow scheduler behavior.
• Diagnose or troubleshoot the flow scheduler.
• Leverage granular visibility of programmable data plane.
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• StragFlow: identifying the victims of the issue.

Contribution

• Propose StragFlow, a tool for detecting stragglers.

• A new perspective in queue monitoring.
• Previous works: identifying the root cause of the issue. 
• ConQuest [6]: which flows occupy the most space in a queue?
• PrintQueue [7]: which flows (directly/indirectly) cause high queueing delay?
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StragFlow components
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Detection Count Reporting

Programmable data plane

* Limitation of programmable data plane:
• No floating point
• Tens of MB memory
• Pipelined architecture
• Limited number of stages



StragFlow: detection

Threshold
• Set a static threshold to detect stragglers

Moving average
• Flexible threshold
• A gradual change in latency may slowly drift the average 
• Eventually making it less sensitive to emerging stragglers

Compare with previous (highest) queueing delay
• Keep track of the delay history 
• No global threshold
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StragFlow: counting stragglers

• Use a compact, collision-tolerant data structure.
• Count-min sketch (CMS)

• Insertion (current queueing delay > previous (highest) queueing delay)
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StragFlow: reporting stragglers

• Naïve approach: reports all stragglers.
• Will flood the control plane.

• Send only necessary info (message digest).
• How to avoid flooding the control plane?
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Data plane

Control plane
Low bandwidth

Incoming traffic Outgoing traffic

Reports



Reducing report rates

0 5 2 1 4
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Accumulates the count until sending threshold.

When reaching the sending threshold:
• Send the count to control plane
• Reset the count to 0.

Control plane

CMS

(FlowId, 5)

0 0 2 1 4

Control plane

CMS

Small sending threshold
Pros:
• Detect stragglers in small flows
• Many small counter
• Lower probability of hash collision
Cons:
• Might miss some stragglers

Sending threshold: 5 



StragFlow: Overall detection mechanism
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Evaluation 

Goal: 
• Detect stragglers when using different scheduling mechanisms. 
• 8-queue PIAS  vs 1-queue FIFO.

Setup:

Detecting Stragglers in Programmable Data Plane14

Tofino 
programmable

switch

Traffic 
replayer

(FastClick)

Control plane

Dataset: CAIDA network traces (> 30M packets)

Reports

Scenario Ingress 
bandwidth

Egress 
bandwidth

Congested 1 Gbps 0.8 Gbps

Balanced 1 Gbps 1 Gbps

Uncongested 1 Gbps 1.2 Gbps



Evaluation: straggler detection

• PIAS has fewer stragglers than FIFO 
• Prioritizing small flows mitigates queueing delays more effectively than a FIFO 

queue.
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Evaluation: traffic pattern on queue-level 
(8-queue PIAS)

• Congested queues might indicate misconfiguration or need readjustment.
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Evaluation: resource consumption

Resource type Resource consumption*

Match crossbars 7.29%

Gateway 8.33%

Hash bits 7.53%

SRAM 12.92%

TCAM 0%

Stateful ALU 0%

Number of stages 6 out of 12
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StragFlow fits comfortably 
within the programmable 
data plane.

*Including other functions such as forwarding and PIAS scheduling.



Conclusion

• Flow schedulers can cause stragglers.

• Proposed StragFlow: a tool for detecting stragglers.
• Instead of identifying the root cause, StragFlow shifts the focus to detecting the 

victims. 
• Operates efficiently in programmable switches. 
• Effectively identifies stragglers and reveals insights into how scheduling policies 

impact flow performance.
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Thank you
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