
Detecting Stragglers in Programmable Data Plane

20/08/2025

Riz Maulana, Habib Mostafaei, Nirvana Meratnia

IRIS Cluster, Department of Mathematics & Computer Science

Flow scheduler

Detecting Stragglers in Programmable Data Plane2

Types of flow scheduler

Clairvoyant
• Requires detailed flow information
• pFabric [1], pHost [2], Homa [3]

Non-clairvoyant
• Operates with limited flow information
• PIAS [4], Qclimb [5]

Goal: minimize flow completion time (FCT).
• Prioritizing small flows over larger flows.

42 MB

24 KB

What can go wrong?

• Prioritizing certain flows -> push others into lower priority queues.
• Accumulate longer waiting times.

• Straggler: a packet with unexpectedly higher queueing delay
compared to other packets from the same flow.

• Straggler is well-studied in system community.
• Tasks that run much slower than other tasks in the same job.

Detecting Stragglers in Programmable Data Plane3

Stragglers in network flows

Detecting Stragglers in Programmable Data Plane4

• Example: PIAS Scheduling.
• Basic idea: Prioritize small flows.
• Initially, put the flow in highest priority queue.
• Gradually demote the flow the lower priority queue.

Queue 1

Queue 2

Queue 3

321 1 1 1 12 23

Straggler

Incoming packets

Demotion threshold:
2 pkts per flow per queue

Queueing delay distribution

Detecting Stragglers in Programmable Data Plane5

Measure queueing delay in hardware switch.
• PIAS 8 queues
• CAIDA traces (2016).

• High priority queues -> lower queueing
delay.

• Demotion to lower priority queue ->
higher queueing delay.

The need for straggler detection

• Provide insights into flow scheduler behavior.
• Diagnose or troubleshoot the flow scheduler.
• Leverage granular visibility of programmable data plane.

Detecting Stragglers in Programmable Data Plane6

• StragFlow: identifying the victims of the issue.

Contribution

• Propose StragFlow, a tool for detecting stragglers.

• A new perspective in queue monitoring.
• Previous works: identifying the root cause of the issue.
• ConQuest [6]: which flows occupy the most space in a queue?
• PrintQueue [7]: which flows (directly/indirectly) cause high queueing delay?

Detecting Stragglers in Programmable Data Plane7

StragFlow components

Detecting Stragglers in Programmable Data Plane8

Detection Count Reporting

Programmable data plane

* Limitation of programmable data plane:
• No floating point
• Tens of MB memory
• Pipelined architecture
• Limited number of stages

StragFlow: detection

Threshold
• Set a static threshold to detect stragglers

Moving average
• Flexible threshold
• A gradual change in latency may slowly drift the average
• Eventually making it less sensitive to emerging stragglers

Compare with previous (highest) queueing delay
• Keep track of the delay history
• No global threshold

Detecting Stragglers in Programmable Data Plane9

StragFlow: counting stragglers

• Use a compact, collision-tolerant data structure.
• Count-min sketch (CMS)

• Insertion (current queueing delay > previous (highest) queueing delay)

Detecting Stragglers in Programmable Data Plane10

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

H1

H2

H3

Flow
ID1

+1

+1

+1

Hash functions Arrays of counters

StragFlow: reporting stragglers

• Naïve approach: reports all stragglers.
• Will flood the control plane.

• Send only necessary info (message digest).
• How to avoid flooding the control plane?

Detecting Stragglers in Programmable Data Plane11

Data plane

Control plane
Low bandwidth

Incoming traffic Outgoing traffic

Reports

Reducing report rates

0 5 2 1 4

Detecting Stragglers in Programmable Data Plane12

Accumulates the count until sending threshold.

When reaching the sending threshold:
• Send the count to control plane
• Reset the count to 0.

Control plane

CMS

(FlowId, 5)

0 0 2 1 4

Control plane

CMS

Small sending threshold
Pros:
• Detect stragglers in small flows
• Many small counter
• Lower probability of hash collision
Cons:
• Might miss some stragglers

Sending threshold: 5

StragFlow: Overall detection mechanism

Detecting Stragglers in Programmable Data Plane13

Evaluation

Goal:
• Detect stragglers when using different scheduling mechanisms.
• 8-queue PIAS vs 1-queue FIFO.

Setup:

Detecting Stragglers in Programmable Data Plane14

Tofino
programmable

switch

Traffic
replayer

(FastClick)

Control plane

Dataset: CAIDA network traces (> 30M packets)

Reports

Scenario Ingress
bandwidth

Egress
bandwidth

Congested 1 Gbps 0.8 Gbps

Balanced 1 Gbps 1 Gbps

Uncongested 1 Gbps 1.2 Gbps

Evaluation: straggler detection

• PIAS has fewer stragglers than FIFO
• Prioritizing small flows mitigates queueing delays more effectively than a FIFO

queue.

Detecting Stragglers in Programmable Data Plane15

29862 30034 29046

22306
19024

15988

0

10000

20000

30000

40000

Congested Balanced Uncongested

FIFO PIAS

N
u

m
b

er
 o

f
st

ra
gg

le
rs

Evaluation: traffic pattern on queue-level
(8-queue PIAS)

• Congested queues might indicate misconfiguration or need readjustment.

Detecting Stragglers in Programmable Data Plane16

14448

4078

1610 808 468 260 132 502
0

5000

10000

15000

1 2 3 4 5 6 7 8

Congested

Queue ID

6862

2744 2616

1228
698 304 226

1310

0

2000

4000

6000

8000

1 2 3 4 5 6 7 8

Uncongested

Queue ID

Evaluation: resource consumption

Resource type Resource consumption*

Match crossbars 7.29%

Gateway 8.33%

Hash bits 7.53%

SRAM 12.92%

TCAM 0%

Stateful ALU 0%

Number of stages 6 out of 12

Detecting Stragglers in Programmable Data Plane17

StragFlow fits comfortably
within the programmable
data plane.

*Including other functions such as forwarding and PIAS scheduling.

Conclusion

• Flow schedulers can cause stragglers.

• Proposed StragFlow: a tool for detecting stragglers.
• Instead of identifying the root cause, StragFlow shifts the focus to detecting the

victims.
• Operates efficiently in programmable switches.
• Effectively identifies stragglers and reveals insights into how scheduling policies

impact flow performance.

Detecting Stragglers in Programmable Data Plane18

Thank you

Detecting Stragglers in Programmable Data Plane19

Reference

[1] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker, “pfabric: minimal near-optimal
datacenter transport,” ser. SIGCOMM ’13, 2013.
[2] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and S. Shenker, “phost: distributed near-optimal datacenter
transport over commodity network fabric,” ser. CoNEXT ’15, 2015.
[3] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: a receiverdriven low-latency transport protocol using
network priorities,” ser. SIGCOMM ’18, 2018, p. 221–235.
[4] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Information-Agnostic flow scheduling for commodity data
centers,” in NSDI ’15, Oakland, CA, May 2015, pp. 455–468.
[5] W. Li, X. He, Y. Liu, K. Li, K. Chen, Z. Ge, Z. Guan, H. Qi, S. Zhang, and G. Liu, “Flow scheduling with imprecise
knowledge,” in NSDI ’24, 2024.
[6] X. Chen, S. L. Feibish, Y. Koral, J. Rexford, O. Rottenstreich, S. A. Monetti, and T.-Y. Wang, “Fine-grained queue
measurement in the data plane,” in CoNEXT ’19, 2019, p. 15–29.
[7] Y. Lei, L. Yu, V. Liu, and M. Xu, “Printqueue: Performance diagnosis via queue measurement in the data plane,” ser.
SIGCOMM ’22, 2022, p. 516–529.

Detecting Stragglers in Programmable Data Plane20

	Default Section
	Slide 1: Detecting Stragglers in Programmable Data Plane

	Untitled Section
	Slide 2: Flow scheduler
	Slide 3: What can go wrong?
	Slide 4: Stragglers in network flows
	Slide 5: Queueing delay distribution
	Slide 6: The need for straggler detection
	Slide 7: Contribution
	Slide 8: StragFlow components
	Slide 9: StragFlow: detection
	Slide 10: StragFlow: counting stragglers
	Slide 11: StragFlow: reporting stragglers
	Slide 12: Reducing report rates
	Slide 13: StragFlow: Overall detection mechanism
	Slide 14: Evaluation
	Slide 15: Evaluation: straggler detection
	Slide 16: Evaluation: traffic pattern on queue-level (8-queue PIAS)
	Slide 17: Evaluation: resource consumption
	Slide 18: Conclusion
	Slide 19: Thank you
	Slide 20: Reference

