
P4 GSoC Kickoff Meeting
June 11, 2025

Agenda

● Introduction Talk by Nate Foster
● P4 GSoC Project Proposals

○ Xiyu Hao – BMv2 with all possible output packets
○ Vineet Goel – P4Simulator: Enabling P4 Simulations in ns-3
○ Xiaomin Liu – P4MLIR: MLIR-based high-level IR for P4 compilers
○ Advay Singh – Gigaflow: A Smart Cache for a SmartNIC
○ Sankalp Jha – SpliDT: Scaling Stateful Decision Tree Algorithms in P4

● To learn more about P4 GSoC and stay updated:
○ https://github.com/p4lang/gsoc
○ https://p4lang.zulipchat.com/ → #gsoc

2

https://github.com/p4lang/gsoc
https://p4lang.zulipchat.com/

The Road Ahead
Nate Foster

3

In 2023, Intel
announced the end
of Tofino of
P4-programmable
switches...

The Cynical View

“Programmability never
really made sense in
the network fabric”

“The P4 language will die
without realistic hardware

targets”

“The open-source
networking era is

officially over”

My Own View
● Network programmability is far from over

○ In fact, it’s an inevitable trend

○ Vendors have long known how to build programmable ASICs

○ They just didn’t expose it to end users like Tofino does

● Moore’s Law is coming for the network fabric too
○ With Terabit link speeds, in-network processing will be a necessity

○ Vendors will want to differentiate, offering different network services

○ Programmability and open-source are the only sane ways to support rich customization

● P4 has a promising future
○ Being quietly used by multiple hardware vendors

○ Growing use of the language on software targets and for validation

The New P4 Language Consortium

● Since 2024, the P4 project has been operating under the Linux
Foundation’s industry-standard model for open-source

● Fiscal endowment from ONF’s reserves plus a contribution from LF

● The Governing Board has recruited a set of dedicated members, including
hardware vendors and users of P4!

P4 on Switches

Cisco SiliconOneXSight X2

P4 on NICs

● Leading vendors have announced P4 support on SmartNICs
○ AMD (Pensando DPU, Alveo FPGAs)

○ Intel (E2000 IPU)

○ NVIDIA (Bluefield DPU)

● NIC-based use cases are helping drive evolution of the P4 language
○ Features for transport, cryptography, etc.

○ Interfaces with memories and interconnects

P4 in Software

● While P4 was designed as a hardware DSL, there is also growing interest
in efficient software pipelines

● P4-DPDK has become the de-facto reference implementation of the
language, replacing the Bmv2 software switch

● A group of kernel hackers have added support for P4 to Linux, in the TC
subsystem

● These efforts have led to a noticeable uptick in contributions to
open-source software for P4 (e.g., the p4c compiler)

P4 for Validation

● One of the most surprising (to me!) uses of P4 has been as a specification
language for fixed-function network devices

● Google’s Switch-V project uses P4 to model and validate their data center
switches [SIGCOMM ‘22]

● Microsoft’s DASH project (part of SoNIC) is using P4 to specify the
functionality of reference pipelines for NICs

● p4testgen [SIGCOMM ’23] provides automatic test generation for P4,
and is in use at several companies

Wrapping Up...

● 2025 will continue to be a time of transition for P4...

● But I am optimistic...

● I believe that network programmability is inevitable

● P4 has a solid foundation (funding, governance), a growing set of
hardware targets, and a diverse set of use cases that is growing
organically in academia and industry

● We are incredibly grateful for your contributions to the language
ecosystem through GSoC!

P4 GSoC Project Proposals

13

BMv2 with all possible output packets
Xiyu Hao

Xiyu Hao

15

Master’s in Computer Science at New York University

Interests:

- Distributed Systems - BFT Problem
- Networks
- Compilers

BMv2 with All Possible Output Packets

16

Keywords:

1. BMv2: Behavioral Model V2. A software simulator for P4 Dataplane &
Controlplane.
Useful for quick P4 program and model (arch) development.

2. All possible outputs: as an example, P4 supports constructs that can be
used to implement multi-path behaviors. “All possible outputs” refers to
the outcomes of taking all such paths.

BMv2 with All Possible Output Packets

17

Example: ECMP - Round Robin

- There exists a “selector” in the ECMP-RR construct that selects
between 3 egress ports in a round-robin fashion.

- Traditionally, one header state is obtained for selecting one egress port.
- Goal: to obtain all three header states, and have them continued in the

pipeline.

BMv2 with All Possible Output Packets

18

Why Does This Matter?

- Diff Testing: Compare with the result of deployed P4 switch. Helpful for fast
program and selector (hash function) behavior validation.

- Deterministic behavior and better test coverage:
Constructing proper inputs to explore code paths produced by the multi-path
constructs is a burden for test writers.
With this feature, there would be much fewer tests need to be built.

BMv2 with All Possible Output Packets

19

Challenges:

- How to “continue” the replicated headers to flow through the pipeline in a
preferably non-hacky way.

- How to preserve the switch and program states (e.g. counters and metadata)
for each replicated packet.

BMv2 with All Possible Output Packets

20

Approach:

- In order to continue the header in pipeline, we record the next control flow
node (table) after the selected action for each replicated headers. Then
continue from the node one header by one header.

- Implement a desirable “snapshot” mechanism that captures the states to
preserve,

Deliverable:

- An interface/mode/pragma that replicates header states for all possible
selections and obtains the resulting states.

BMv2 with All Possible Output Packets

21

Q & A

P4Simulator: Enabling P4 Simulations in ns-3
Vineet Goel

About Myself

• Vineet Goel

• Undergrad student at IIT Roorkee

• Interested in Web3, system design and full stack
development

• Github :Vineet1101

• Linkedin : Vineet

• Email Id: Vineetgoel692@gmail.com

• Hobbies: Playing video games

https://github.com/Vineet1101
https://www.linkedin.com/in/vineetgoel692/
mailto:Vineetgoel692@gmail.com

Introduction to P4Sim

P4sim is a high-performance P4-driven simulation framework built on bmv2 and NS4,
seamlessly integrated with ns-3.

• Efficient Switch Modelling

• Modern P4 Architecture Support

• Protocol Independence

• Full ns-3 Integration

• Github Repo:P4Sim

https://github.com/HapCommSys/p4sim

The Structure of the P4Sim

The P4 switch model in ns-3, based on PSA architecture, includes a P4-configured packet processing
pipeline and ns-3-managed buffer scheduling for virtual time simulation.

Limitation of Current P4Sim

GSOC: Project Goals

• Control Plane Implementation for P4Sim

• Data Collection and Tracing Mechanism

• Testing and Example Scenarios

• Documentation

Technical Approach to the Project

System design integrates P4 runtime control in ns-3; the data plane is implemented,
but the control plane is still missing.

Timeline of the Project

• 2 June- Coding Period for GSOC starts.

• 15 July- Mid Term Evaluation
• Ensure a working control plane setup

• 1 September- Final Evaluation
• Delivering final code, tests, and documentation

Benefits to the Community

• Enablement of centralized control in P4 simulator

• Educational Utility for P4

• Improved P4 program debugging with ns3 virtual time

• Offers broader support for P4

Thank you everyone

Q/A

P4MLIR: MLIR-based high-level IR for P4
compilers

Xiaomin Liu

Introduction

● Xiaomin Liu (SHOW-min LIH-oo)

● From Queens, NYC

● Bachelor’s Degree in Computer
Science at NYU

● Interested in compilers &
programming languages

● Interning at Google this fall working
on their SmartNICs

Motivation

● MLIR (Multi-Level Intermediate Representation) is a compiler framework for
representing code at various levels of abstractions using custom IR called
dialects

● P4C currently suffers from performance issues rooted in its design:

○ Excessive memory usage – for example def-use pass can consume 16GB+

○ Has immutable IR but modifies its IR, which causes inefficient copying of nodes

○ Long compile times compared to other compilers even though p4 is a simple
language

Current P4C

Parser/Type Inference Frontend/Midend BackendP4::IR

P4::IR

P4MLIR dialect

P4::IR with
backend extensions

Backend

BMv2

Tofino

Integration with external projects External MLIR dialect

LLVM IR

CIRCT dialects? Verilog

LLVM dialect?

New SW/HW
targets?

P4::IR

P4HIR
P4 High-level IR

SW/HW
targets

p4mlir-translate

P4MLIR Today
● Makes control/data flow explicit

while preserving high-level P4
semantics

● Basic statements and translations
from P4 frontend IR are already
implemented

● Starting to implement existing P4
frontend/midend passes

void doubleIfEven(inout bit<8> val) {
bool isEven = val % 2 == 0;
if (isEven) {

 val = val * 2;
}

}

P4MLIR Today
● Makes control/data flow explicit

while preserving high-level P4
semantics

● Basic statements and translations
from P4 frontend IR are already
implemented

● Starting to implement existing P4
frontend/midend passes

p4hir.func @doubleIfEven(%arg0: !p4hir.ref<!b8i>
{p4hir.dir = #p4hir<dir inout>, p4hir.param_name =
"val"}) {

%c2_b8i = p4hir.const #int2_b8i
%val = p4hir.read %arg0
%mod = p4hir.binop(mod, %val, %c2_b8i)
%eq = p4hir.cmp(eq, %mod, %c0)
%isEven = p4hir.variable ["isEven", init]
p4hir.assign %eq, %isEven
%val_0 = p4hir.read %isEven
p4hir.if %val_0 {

 %c2_b8i_1 = p4hir.const #int2_b8i
 %val_2 = p4hir.read %arg0
 %mul = p4hir.binop(mul, %val_2, %c2_b8i_1)
 p4hir.assign %mul, %arg0

}
p4hir.return

 }

Midpoint

● Context

○ There are 57 frontend and midend passes in the entire P4C repo

○ Some frontend passes are required to perform type inference

○ Other passes can be skipped as they are not needed

○ Every pass in P4C needs to copy the entire program, even on small changes

● Reach functional parity with existing P4C frontend and midend passes within
the MLIR framework

Deliverables

● Address core performance issues

○ Improve data structure usage and existing implementations of passes

○ Design a new replacement use-def analysis pass with MLIR

● Lay groundwork for backend extensibility by lowering toward LLVM IR

P4 Source

P4C

Clang/LLVM

C Source BPF Instructions

Questions

Gigaflow: A Smart Cache for a SmartNIC
Advay Singh

Advay Singh
Pursuing my Bachelors in Computer Science at
the University of Michigan, USA

- First time open source contributor!
- Interested in systems, architecture,

networks, and compilers
- Github: https://github.com/AdvaySingh1
- Hobbies: painting, boxing

https://github.com/AdvaySingh1

Open vSwitch And HW Offload

Slow and CPU
intensive software
flow lookup…

Limitations in space makes it difficult to cache many
flows, resulting in low HW cache hits

Gigaflow

Key Idea: Break Openflow pipeline
traversals into multiple sub-traversals
which flows can share

Leveraging
1) Pipeline locality
2) Rule space reusability,

The Gigaflow cache archives higher
cache hit rates

Gigaflow Architecture

Gigaflow & P4
A Gigaflow cache is a pipeline of p4 tables full of Longest
Traversal Matching (LTM) rules

Challenges And Goal

Gigaflow is currently a SW emulation (no HW offload
supported)

Implement the offload in an AMD Alveo U250 board

Main deliverable: Create a template for HW offload of
Gigaflow caches on P4 enabled devices AMD Alveo U250

Deliverables

Gigaflow Tables

AMD P4-SDNet
Gigaflow Pipeline

NetFPGA Shell

AMD Vivado

AMD Alveo U250

Deliverables Cont.

AMD SDNet Driver +

Install p4 rules into Gigaflow tables

Current Infrastructure

Gigaflow Enabled
OVS Tgen

Collector

Gigaflow Backend
Device (au250)

TrafficOpenFlow
Rules

LogsLogs

Rx Traffic

Tx Traffic

Cache
Install Cache Miss

NIC (MLNX)

DPDK PMD RX QueueDPDK PMD TX Queue

- Microflow Kernel
Caches

Value
- Open vSwitch is the most popular virtual switch in the world

- Megaflow Kernel
Caches

- AF_XDP

- DPDK

- SR_IOV

- Now it’s time for Gigaflow

- Its improvements have been incremental

Using the template, to add more p4 enabled devices (AMD Pensando, BlueField
DPUs, etc.) to the Gigaflow backend

Future Work

AMD Pensando Nvidia BlueField

SpliDT: Scaling Stateful Decision Tree
Algorithms in P4

Sankalp Jha

Sankalp Jha
Bachelor of Technology in Computer
Science & Information Technology,
Ajay Kumar Garg Engineering College, India

- Co-Organizer of Google Developer Groups on Campus AKGEC
- College Captain of Men’s Table Tennis Team
- Public Speaker & Content Writer
- Debuting as an Open Source Contributor

Problem Statement

Parsed
Packet
Features

Feature
Values

Stateless features
+

Stateful features Feature whose value is collected over
a flow(over Multiple packets)
(Ex: FIN Flag Count, total Fwd
Packet, etc.)

Feature whose value is collected of a
single packet(Ex: Protocol, srcIP, etc.)

Existing Inefficient
ManagementProblem

0

to

2n

Problem Statement Contd.

Feature 1
Flow 1

Feature 2
Flow 1

Feature 3
Flow 1

Feature 1
Flow 2

Feature 2
Flow 2

Feature 3
Flow 2

Feature 1
Flow 3

Feature 2
Flow 3

Feature 3
Flow 3

Feature 1
Flow 3

Feature 2
Flow 3

Feature n
Flow m

No. of Features Increases -> No. of column Increases
No. of Flow Decreases -> No. of Row Decreases
Vice-versa too ->Area is constant-> n * m = constant

No. of Features(n)

No. of Flows
(m)

F0

F1 F2

F3 F4 F6F5

F7
F8 F9 F10 F11 F12 F13 F14

Conventional Decision Tree

Stateful Memory

A flow having 2n packets

n

to

2n

Proposed Solution

Feature 1
Flow 1

Feature 2
Flow 1

Feature 3
Flow 1

Feature 1
Flow 2

Feature 2
Flow 2

Feature 3
Flow 2

Feature 1
Flow 3

Feature 2
Flow 3

Feature 3
Flow 3

Feature 1
Flow 3

Feature 2
Flow 3

Feature n
Flow m

No. of Features(n)

No. of Flows
(m)

F0

F1 F2

F3 F4 F6F5

F7 F8 F9 F10 F11 F12 F13 F14

SpliDT- Partitioned Decision Tree

Stateful Memory

A flow having 2n packets

SID0

SID1 SID2 SID3 SID4

0

to

n

Proposed Solution Contd.

https://docs.google.com/file/d/1H85sLZfi1Dgjph1_sgbJjVPT7VLHbjBq/preview

Proposed Solution Contd.

https://docs.google.com/file/d/1Wb3FXgxG6CY5WnJQ8uAZwY7eHrCC4uqE/preview

Challenges & Goals

● Scale decision tree inference under strict switch resource limits (TCAM,
SRAM, PHV)

● Support dynamic, partitioned feature selection instead of fixed top-K
features

● Convert trained models into efficient, deployable P4 match-action logic

● Automate the full flow from dataset training to switch deployment and
testing

Project Pipeline

Intel Tofino

Optimal Partitioned
DT model

Feasibility
Testing

Design Search
Exploration

Training
partition
subtrees

SpliDT Compiler

Dataset, Target, Objective(s)

Subtree1

Subtree2

Subtree3

Subtree4

JSON File

P4 Generator
(Py File)

Runtime Code
Generator
(Py File)

SpliDT Generator P4 Program

P4 Compilerp4info File

Control Plane

P4 Runtime Client (Py File)

P4 Runtime Server

gRPC

Target Driver Target Binary
Data
Plane

Pickle File

Deliverables

A. Software-based Action Items
(Completed)

Re-ran decision tree
training with
HyperMapper config
tuning.
Integrated CICFlowMeter
for consistent feature
extraction.

Built SpliDT-based
inference prototype with
fixed features.
Validated memory
layout, register access
patterns.

Running simulations on
Tofino with synthetic
traffic.
Planning auto-generation
of subtree-specific P4
code.

Extracted top-performing
partition DT with
SID-feature mappings.
Generated TCAM/SRAM
entries for controller
deployment.

B. P4 Data-Plane Action Items
 (In Progress)

Deliverables

C. Controller Action Items
(Planned)

Define P4Runtime
protocols and
gRPC-based control
flow.
Handle flow-to-subtree
dynamic mapping

Create end-to-end
pipeline from dataset to
live switch.
Automate training,
codegen, and
deployment steps.

Use MoonGen for traffic
aligned to dataset
behavior.
Deploy via Ansible and
collect performance
metrics.

Consume codegen
output (p4info/context)
for programming.
Deploy decision tree
partitions into switch
MATs.

D. Automation & Deployment
 (Planned)

Future Scope

○ Generalize the pipeline to support other programmable platforms like

SmartNICs or FPGA-based switches.

○ Dynamic subtree reconfiguration via control-plane triggers.

○ Production-Scale Integration in data centers for tasks like DDoS

detection, QoS enforcement, or flow classification.

○ Extend beyond Decision Trees to support other interpretable models

like Random Forests in P4.

Q&A Session
Grateful for this opportunity to excel

