
P4-SpecTec
Mechanized Language Definition for P4

Jaehyun Lee*, Yechan Woo*, Nate Foster†, Sukyoung Ryu*

KAIST*, Cornell University†

There are mainly three representations of the P4 programming language.

P4 Language from a Programming Language POV

1. Official Spec.
THE definition in natural language and code

3. Formal Spec.
Precise mathematical description
(Petr4, P4Light, HOL4P4, …)

2. Implementations.
Executable representation (p4c, Bmv2, …)

Representing the same underlying concept: the syntax and semantics of P4.

Despite in Different Forms,

1. Official Spec.
in natural language

3. Formal Spec.
in mathematical notations

2. Implementations.
in programming language (C++, …)

QUESTION: Are they consistent with each other?

They should be, in principle.

But in practice,

• manual maintenance

• feature updates

• ambiguities in the official spec

cause discrepancy among the representations.

1. Official Spec. = 2. Implementations. = 3. Formal Spec.
Definition Execution Guarantees

Official Spec versus Implementations

void foo() {

 bit<32> x;

 bit<32> x;

}

Do we accept this?

1. Official Spec.
no restriction on duplicate local declaration

2. Implementations.
p4c rejects duplicate local declaration

Official Spec versus Formal Specs

1. Official Spec.
defines the complete set of language features

3. Formal Spec.
often omit some feature in their core calculi

• parser block semantics

• type inference algorithm

• cast insertion

Worse, the language evolves

1. Official Spec.
introduced generic structs and headers (v1.2.2)

3. Formal Spec.
unsupported (undefined) in all existing formalizations

2. Implementations.
p4c bug related to generic structs used with type inference

i.e., the gap widens as the language evolves

Other Language with a Similar Issue

WebAssembly (Wasm) strives to maintain consistency among representations.

For a new feature to be standardized, the committee requires four artifacts:

1. Formal Spec.

3. Reference Interpreter. in OCaml

2. Prose Spec.
semantics in both mathematics and prose pseudocode

4. Test Suite. for the new feature

The Wasm Standard: Formal and Prose Spec

1. Formal Spec. execution rules as formal reduction rules

2. Prose Spec. step-by-step pseudocode-style explanation

A Day in the Life of a Language Designer

a laborious and error-prone task: consistency is also an issue in Wasm

(left) formal and prose spec in raw text
(right) interpreter and test suite

Observation: What is the source of truth?

1. Formal Spec.

3. Reference Interpreter.

2. Prose Spec.

4. Test Suite.

From a Programming Language POV, all originates from … the formal spec.

Unambiguous and Precise (than prose), yet Abstract (than OCaml).

A Toolchain Using Formalism as the Source of Truth

Suhyeon Ryu

Hoseong Lee

Hyunhee Kang

Can we automate standardization with the formal spec?

SpecTec for WebAssembly Standard

SpecTec is a framework for mechanizing the Wasm spec.

(1) Specify the formal Wasm syntax and semantics in SpecTec DSL.

(2) SpecTec auto-generates various backends from that single source of truth.

1. Formal Spec. in SpecTec DSL

3. Interpreter.

2. Prose Spec.

4. Test Suite.

Input: Formal Spec, the Single Source of Truth

(1) Specify all Wasm 2.0 formal syntax and semantics in SpecTec DSL.

rule Step_pure/binop-val:

(CONST nt c_1) (CONST nt c_2) (BINOP nt binop) ~> (CONST nt c)

— if c <- $binop_(nt, binop, c_1, c_2)

rule Step_pure/binop-trap:

(CONST nt c_1) (CONST nt c_2) (BINOP nt binop) ~> TRAP

— if $binop_(nt, binop, c_1, c_2) = eps

ASCII representation of the formal notations.

More, the definitions are type-checked to prevent human errors.

Output: Auto-Generated Representations

(2) SpecTec auto-generates various backends from that single source of truth.

1. Formal Spec. in LaTeX

3. Interpreter. passing against all (49833 tests) of the official test suite

2. Prose Spec. in reStructuredText

4. Test Suite. a Work-In-Progress

SpecTec Helps the Language Ecosystem

Specification Bug Prevention
• Injected 13 retrospective spec bugs into SpecTec, all were detected.

• Detected 10 bugs in feature proposals.

Forward Compatibility
• Applied SpecTec to 5 proposals.

• SpecTec can support fast prototyping for language extensions.

Current Status of SpecTec

Meeting note from Wasm Community Group Meeting on June 2024,

Polishing the tool, working on test generation & theorem prover backends.

Recap: Three Representations of P4 Language

1. Official Spec.

2. Implementations.

3. Formal Spec.

1. Formal Spec.

2. Prose Spec.

3. Reference Interpreter.

4. Test Suite.

SpecTec

Idea: P4-SpecTec for the P4 Language Infrastructure

(1) Specify the formal P4 syntax and semantics in SpecTec DSL.

(2) Auto-generate various backends from that single source of truth.

1. Official Spec. comprehensible document

2. Implementations. lightweight interpreter

3. Formal Spec. with complete set of features

 3. Formal Spec written in SpecTec DSL

Actually, We Need an Initial Step

(1) Make a formal P4 syntax and semantics definition.

Building a complete OCaml model of P4 based on Petr4, P4Light, and HOL4P4.

Almost done with naive implementation, filling in details.

P4 program
P4 AST

Interpreter

Instantiation

Type checker

Packet

Target switch

Table entries

Parser (syntax)
Packet

“Complete” Formalization Invites Questions & Clarity

What is the range of HM type inference in P4?

A Proof of Concept Prototype

(2) Specify the formal P4 syntax and semantics in SpecTec DSL.

A prototype based on the OCaml model.

Semantics of if statement in the official spec

A Proof of Concept Prototype

(2) Specify the formal P4 syntax and semantics in SpecTec DSL.

A prototype based on the OCaml model.

Syntax of statements

Dynamic semantics of if statement

Generating a Formal Spec in PDF

(3) Auto-generate various backends from that single source of truth.

LaTeX backend already works on the fly.

Generated LaTeX documentSpecTec DSL

Generating a Formal Spec in PDF

(3) Auto-generate various backends from that single source of truth.

Future Directions

(3) Auto-generate various backends from that single source of truth.

Others (official prose spec, interpreter, …), to be designed & discussed…!

1. Official Spec. comprehensible document

2. Implementations. lightweight interpreter

3. Formal Spec. with complete set of features

 3. Formal Spec written in SpecTec DSL

Caveats: What SpecTec is, What SpecTec is NOT

SpecTec is a toolchain for mechanizing programming language definitions,

and auto-generating language representations.

Currently SpecTec does NOT,

• generate a parser

• generate a type checker

• generate an interpreter written in industrial programming languages

• instead operates on our IR(Intermediate Representation)

• provide a plug-and-play experience

• need adaptations to make it work on P4-specific invariants

Welcoming Discussions

We hope P4-SpecTec can:

• Support fast prototyping of new features.

• Clarify unintentionally ambiguous terms in the official spec.

And discuss with the community:

• In what shape do we imagine the auto-generated spec?

• What feature can be prototyped in P4-SpecTec?

• What other backends may be useful for P4?

Thank You

WebAssembly Community Group, WebAssembly specification, version 2.0, August 2024.

Dongjun Youn, Wonho Shin, Jaehyun Lee, Sukyoung Ryu, Joachim Breitner, Philippa Gardner,
Sam Lindley, Matija Pretnar, Xiaojia Rao, Conrad Watt, and Andreas Rossberg. 2024. Bringing
the WebAssembly Standard up to Speed with SpecTec. Proc. ACM Program. Lang. 8, PLDI,
Article 210 (June 2024), 26 pages. https://doi.org/10.1145/3656440

The P4 Language Consortium. P416 language specification, version 1.2.4, May 2023.

Ryan Doenges, Mina Tahmasbi Arashloo, Santiago Bautista, Alexander Chang, Newton Ni,
Samwise Parkinson, Rudy Peterson, Alaia Solko-Breslin, Amanda Xu, and Nate Foster. 2021.
Petr4: formal foundations for p4 data planes. Proc. ACM Program. Lang. 5, POPL, Article 41
(January 2021), 32 pages. https://doi.org/10.1145/3434322

Qinshi Wang, Mengying Pan, Shengyi Wang, Ryan Doenges, Lennart Beringer, and Andrew W.
Appel. Foundational Verification of Stateful P4 Packet Processing. In 14th International
Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in
Informatics (LIPIcs), Volume 268, pp. 32:1-32:20, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2023). https://doi.org/10.4230/LIPIcs.ITP.2023.32

Anoud Alshnakat, Didrik Lundberg, Roberto Guanciale, and Mads Dam. 2024. HOL4P4:
Mechanized Small-Step Semantics for P4. Proc. ACM Program. Lang. 8, OOPSLA1, Article 102
(April 2024), 27 pages. https://doi.org/10.1145/3649819

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

