
Supporting PTP-1588 in BMv2:

A Proposed Ingress and

Egress Timestamping Scheme

Bill Pontikakis, François-Raymond Boyer

Agenda
• WHY (Introduction & Problem Motivation)

• 5G / ORAN / eCPRI

• P4 and BMv2 (eCPRI as a new case-study for P4)

• Timing Synchronization using PTP-1588 over IEEE 802.3 Ethernet

• HOW (Technical Implementation)

• Challenges with the original timestamping implementation in BMv2

• Details of our modifications to the BMv2 switch

• How we implement Ingress and Egress timestamps

• WHAT (Results & Achievements we have so far)

• Error resolution with respect to original implementation

• Statistical results showcasing the time error reduction

Legacy Cell Towers & Cell-site Cabinets

• Legacy cell towers rely on long
copper cabling and power-
hungry amplifiers, requiring
extensive infrastructure, such as
large footprints, dedicated huts,
power backups, and cooling
systems.

• This setup results in high
operational costs, low bandwidth,
and limits scalability, making it
unsuitable for future mobile
network demands.

Figure 1 - Application Note 310 - Understanding the Basics of CPRI Fronthaul Technology - Gary Macknofsky, Product Manager, EXFO

Baseband Unit & Remote Radio Head Architectures in Traditional RAN

• In upgraded cell sites Fiber replaces
copper cabling, reducing noise,
power needs, and increasing
bandwidth for C-RAN.

• Remote radio unit moved to the top
of the tower, co-located with
antennae.

• Communication between the
baseband unit (BBU) and remote
radio head (RRU) now uses the
Common Public Radio Interface
(CPRI) protocol

• BBU is proprietary and from a single
vendor.

https://www.mavenir.com/portfolio/mavair/radio-access/openran/

Open RAN (O-RAN)

• Open RAN enables modular RAN
components from multiple vendors
by standardizing interfaces.

• Main elements: Radio Unit (RU),
Distributed Unit (DU), Centralized
Unit (CU).

• Communication between RU and DU
now occurs over Open Fronthaul
using protocols like eCPRI.

• Key benefits: Increased agility,
innovation, cost savings, and support
for virtualization on vendor-neutral
hardware.

https://www.mavenir.com/portfolio/mavair/radio-access/openran/

High-level E2E Network Architecture of 5G ORAN Deployment

Figure 10.1 Chenumolu, S., 2023. Open RAN Deployments. Open RAN: The Definitive Guide, pp.145-171.

eCPRI (enhanced Common Public Radio Interface)

• 5G networks rely on eCPRI to transfer user and control data between
Distributed Units (DUs) and Radio Units (RUs) in the fronthaul.

• eCPRI is susceptible to delays and packet loss, especially in
congested networks.

• 5G fronthaul networks have strict end-to-end timing requirements.
• PTP used to maintain precise synchronization.

Figure 2 from: Solution Brief | Intel’s
Accelerated Virtual Cell Site Router Solution
on an Intel® FPGA-Based SmartNIC N6000-

PL Platform Helps Communication, 2023

eCPRI Intel FPGA IP High-Level System Overview

Figure 6 from: eCPRI Intel® FPGA IP User
Guide, IP Version 2.0.2, 2023

PTPv2-1588 over IEEE 802.3 Ethernet implementation in P4

• We implemented eCPRI in P4, leveraging Intel’s eCPRI
FPGA IP as a reference design.

• We modified our initial P4 eCPRI implementation to
enhance modularity and flexibility for future extensions.

• To validate our design, we modified BMv2 to support
precise ingress and egress timestamps necessary for
accurate PTP protocol testing.

• Our PTP implementation is a minimal, proof-of-concept
(POC) unit designed to demonstrate the P4 language's
ability to implement time synchronization protocols.

Implementing High-Precision Timestamps in BMv2

Limitations of Current BMv2 Standard Metadata Timestamps:
• Standard BMv2 timestamps lack precision due to delays

introduced by additional processing stages before Ingress and
after Egress.

Implementation of Precise Ingress and Egress Timestamps:
• Ingress timestamp is captured as early as possible when a packet

enters the switch to reduce latency inaccuracies.
• Egress timestamp is taken at the last possible moment, just

before the packet leaves the switch.
• Timestamps are represented in a 64-bit truncated format, aligning

with PTPv2-1588 requirements and improving compatibility with
time synchronization protocols.

Enhanced Timestamp Precision in BMv2 for Time-Sensitive Networking

Precise Ingress Timestamping for BMv2:

• The ingress timestamp is a 64-bit truncated Unix format for improved
precision.

• Unix timestamp measures time by the number of non-leap seconds
that have elapsed since 00:00:00 UTC on 1 January 1970, and it is
widely used in synchronization standards.

• Timestamping is integrated directly into the BMI port to capture
ingress timestamps as early as possible in the packet processing
pipeline.

• The BMI port code was converted from C to C++ to enhance code
flexibility and maintainability.

Architecture and Code Modifications

Precise Ingress Timestamping for BMv2:

• BMv2 was restructured to use input structs for function
handlers, simplifying the addition of metadata to input packets.

• The restructuring extended to parent classes of device
managers and switches, supporting future metadata and
functionality enhancements.

• All changes are backward compatible and pass existing tests,
ensuring smooth integration with previous systems.

• New tests were developed to validate the added components
and ensure their functionality.

Architecture and Code Modifications (cont’d)

Enhancing BMv2 Egress Timestamps

• The egress timestamp was added at the last possible moment,
just before the packet leaves the switch.
• Effect: It improves precision.
• Consequence: The egress timestamps cannot be directly accessed

from the P4 pipeline.
• Resolution: … NEXT SLIDE

Enhancing BMv2 Egress Timestamps (cont’d)

Two metadata fields were added, accessible from P4:
• A 1-bit field enables or disables the automatic truncated egress timestamp.
• A 32-bit field sets the offset in the packet where the egress timestamp is

injected.

• All changes are backward compatible and passed all existing tests:
• Effect: Ensures smooth integration with existing designs.

• New tests were developed:
• Goal: To validate the added functionality and ensure proper operation.

Enhancing BMv2 Egress Timestamps (cont’d)

Automatic egress timestamp
injection after the P4 pipeline
is finished processing

PTP Common Message
Header

Ethernet Header

Dummy payload

PTP Common Header

[Target Timestamp Field]

Timestamp insertion offset
is set inside P4 pipeline

Software Interface Modification:

Old Packet Handler – Hardwired Variables

• Hardwired to specific parameters, limiting flexibility and making it difficult to extend
functionality

using PacketHandler = std::function<void(int port_num, const char *buffer, int len, void* cookie)>;

New Packet Handler – Flexible Structs

• Encapsulates all parameters a struct, improves flexibility, simplifies maintenance, enables
extensibility:

struct PacketInfo {

int port_num; const char* buffer; int len;

MyMetadata metadata;

};

using PacketHandlerWithPacketInfo = std::function<void(const PacketInfo *packetInfo)>;

New Packet Handler

Software Interface Modification:
New Set_Packet_Handler function

Old set_packet_handler function – Void Pointer
• Passes a cookie (void pointer) to the SwitchWContexts object to access its

specific receive function in bmi_port.c. However, using a void pointer limits
type safety and flexibility:

ReturnCode set_packet_handler(const PacketHandler &handler, void *cookie);

New set_packet_handler function – Lambda based access to
Metadata

• Replaces the Void Pointer with a lambda function, providing bmi_port.cpp
direct access to the "receive with metadata" function. This approaches
enhances type safety and simplifies access to Metadata:

ReturnCode set_packet_handler_with_packet_info(const
PacketHandlerWithPacketInfo &handler);

Implementation and Validation of BMI Port Testing

Background:
• Original Testing Limitation:

• bmi_port code was not tested
• nanomsg-based injection into switch

Testing Update:
• Reason for New Tests:

• Had to put new functionality in bmi_port.
• Are we breaking something? Is new functionality correct?

• Solution: libpcap mock – link-time replacement of library.

Benefits:
• Comprehensive Testing: This new testing setup allowed for thorough

validation across all nine tests in the simple_switch test suite.
• Successful Outcomes: Using the libpcap mock replaced the nanomsg-based

injector, ensuring that the bmi_port functionality was fully tested and verified.

BMI port
(was not in tests)

Simple Switch

Nanomsg
packet injectorlibpcap

mock

libpcap

Original injection
Our injection

Bug Discovery and Resolution in bmi_port_destroy_mgr Function

Bug in bmi_port_destroy_mgr Function:

Function Purpose: To destroy all active ports managed by BMI.

• Problem: Only half of the ports were being removed during the
destruction process.

• Cause: Elements were being removed from the array while iterating over
it, causing the array size to change dynamically.

• Effect: This led to skipped elements and some ports remaining
undestroyed.

Resolution:
• Refactored Loop Logic: Modified the iteration approach to properly

handle dynamic changes in the array, ensuring all ports are successfully
destroyed.

Deadlock Resolution in BMI Port Interface

Issue in _bmi_port_interface_remove Function:

Problem:
• Deadlock: Occurred when _bmi_port_interface_remove performed a write

operation and waited for a read response while holding port_mgr->lock.
• Conflict: The run_select thread also needed port_mgr->lock to read from or

write to the same pipe during its loop, resulting in both threads being stuck.

Cause:
• Simultaneous Lock Acquisition: Both threads required the same lock at

different times, leading to a deadlock where neither could proceed.

Resolution:
• Modified Locking Mechanism: Changed the locking strategy to allow non-

blocking access, ensuring that both threads could proceed without waiting
on each other indefinitely.

Bug Resolution in dev_mgr_bmi.cpp: Proper Thread and Resource Cleanup

Bug in dev_mgr_bmi.cpp Regarding p_monitor:

Problem:
• The p_monitor thread was not stopped at the correct time, leading to two potential issues:

1. Pure Virtual Function Call: If p_monitor was not halted in the ~BmiDevMgrImp()
destructor, it risked invoking a pure virtual function after the derived class was destroyed,
leading to undefined behavior.

2. Access to Destroyed Resource: The p_monitor thread needed to be stopped before
destroying port_mgr. Failing to do so could result in the thread attempting to access an
already destroyed port_mgr, causing potential crashes.

Resolution:
• Order of Destruction Modified:

• Ensured that p_monitor was properly stopped within the destructor of BmiDevMgrImp.
• Ensured that p_monitor was stopped before port_mgr was destroyed, preventing access

to invalid resources and avoiding crashes.

Mininet Testbench for the PTP-1588 Timestamp Implementation

Distribution of Normalized Compensation Values for
PTPv2-1588 Synchronization using Standard Timestamps

• All compensation values
• Normalized with mean

Max value = 57 ms
Min value = -16 ms

Range = 73 ms

Standard deviation = 12950

Detailed View of the Most Precise PTPv2-1588
Compensation Values using Standard Timestamps

• 90th percentile
compensation values

• Normalized with mean

Max value = 16 ms
Min value = -8 ms

Range = 24 ms

Distribution of Normalized Compensation Values for
PTPv2-1588 Synchronization using New Timestamps

• All compensation values
• Normalized

Max value = 0.04 ms
Min value = -0.05 ms

Range = 0.09 ms = 90 μs

Standard deviation = 4723

Detailed View of the Most Precise PTPv2-1588
Compensation Values using New Timestamps

• 90th percentile
compensation values

• Normalized

Max value = 0.004 ms
Min value = -0.005 ms

Range = 0.009 ms = 9 μs

PTP-1588 New vs Standard Timestamp Implementation:

Standard Timestamp Implementation:

• Timestamps and measurements in μs.

• The 90th percentile of values lies within a 24 ms range:

• Unable to enforce a specific clock difference value, which limits design verification.

New Timestamp Implementation:

• Timestamps and measurements in ns.

• The 90th percentile of values lies within a 9 μs range.

• Allows enforcement of a specific clock difference value, enabling full design verification.

Conclusion
• Improved Timestamp Precision in BMv2: Enhanced the

timestamp accuracy in the BMv2 switch, reducing timing
errors from hundreds of milliseconds to tens of
microseconds, critical for supporting time-sensitive
applications.

• Versatile Timestamping System: The new timestamp
system is flexible and can be applied to other
synchronization protocols beyond PTP, broadening its
utility across various network technologies.

• Future-Proof BMv2 Structure: Our modifications to
BMv2 make the codebase more modular and adaptable,
providing a robust foundation for future developments in
precision timing and network innovations.

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

