
Anton Korobeynikov, Principal Software Engineer, Compiler Development

Towards the
performant P4C
Access Softek Toolchains, www.softek-toolchains.com

http://www.softek-toolchains.com

• Long-term contributor to LLVM

– First contributions date back to 2005

– Code owner of MSP430 backend; many contributions to different parts of LLVM

• Some contributions to gcc & derivatives

– Among primary authors of llvm-gcc 4.2

• Contributions to Swift

– Mostly automatic differentiation support (Differential Swift)

• Some other open-source projects

– Sometimes not even compiler-related

2

About myself

• P4C is a reference compiler for P4 language

• Usually reference implementations are not required to be fast & efficient

• But there is no other production-ready P4 compiler around…

• Downstream users rely on P4C

• So we either need to improve P4C

• … or develop something that could be used instead

• Does not seem to be a viable option today

Rationale

3

Baseline

4

• P4C v1.2.4.8 (released ~January 2024)

• P4CParserUnroll.switch_20160512 gtest tescase

• Run via test/gtestp4c	--gtest_filter=P4CParserUnroll.switch_20160512

• Source code in testdata/p4_14_samples/switch_20160512

• ~9k lines of P4-14 code

• Benchmarking via Hyperfine (20 runs + 1 warm-up) on Apple M1 Pro Laptop:

• Time (mean ± σ): 15.193 s ± 0.303 s [User: 15.044 s, System: 0.101 s]

• Range (min … max): 14.749 s … 16.083 s 20 runs

This looks quite a lot given the input size

Profile

5

Profile

5

Frontend takes 81% of entire 16s compilation time

Profile with inverted call stack

6

Profile with inverted call stack

6

37.2% of all compilation time is consumed by RTTI (dynamic_cast	/	typeid)!

Where does RTTI usage come from?

RTTI in P4C

7

Where does RTTI usage come from?

RTTI in P4C

7

Downcasting & identity checks

• Generic RTTI is slow:

– has to deal with arbitrary open class hierarchies,

– relies on compiler-generated metadata,

– hard to inline / optimize, etc.

• Many projects implemented their own RTTI for closed / semi-closed class hierarchies

– LLVM / clang

– MFC

– Unreal Engine & other game engines (AWS Lumberyard, …)

• Cannot use the lightweight static LLVM-style RTTI for P4C IR nodes:

– Multiple inheritance

– Abstract & virtual base classes

– Cannot use static_cast for downcast, need to know the offset of base class in derived

RTTI

8

• typeid is generated from node type name at compile time

• Supports semi-open-ended class hierarchies

– Need to derive from the single base class (RTTI::Base) that does heavy lifting & actual

implementation

• Supports multiple inheritance and virtual base classes:

– Compiler generates necessary this adjustment for us via a virtual function call

• Some boilerplate code hidden behind macros (autogenerated for Node)

• Provides is<T>(),	typeId(),	to<T>() class methods

• Downstream code that uses dynamic_cast / typeid on Node pointers works as
usual

New P4C RTTI Implementation

9

Overhead: one virtual call + some easily optimizable code

Results

10

Results

10

43% reduction of compile time!

Results

11

No traces of RTTI runtime calls (and no custom RTTI either)

Tale of malloc and 3 Visitors

12

More than 15% is Visitor boilerplate

• Each visitor maintains internal state in a hash table (aka `visited`)

– IR::Node* => some state (just 2 bools for Inspector and ChangeTracker for Modifier	/	Transform)

• Total number of init_apply() calls here:

– 117k Inspector’s, 13 Modifier’s and 86k Transform’s

• std::unordered_map is not the fastest / best implementation out there

• Huge malloc traffic to create / destroy these hash tables and their contents

– For each init_apply() call: new hash map + corresponding malloc traffic

• GC is expensive:

– Needs to memset allocated / freed memory

– Slow implementation as compared to other memory allocators

– Has significant overhead: ~25% runtime improvements with GC off

Visitor Boilerplate

13

• Pointers to map values do escape (visitCurrentOnce): code relies on
their stability during insertion

– Prevents drop-in use of not standard-compliant modern maps

• Few places rely on iterator stability during insertion

– Need to revise the code in order not to do this

• Extra unnecessary lookups (e.g. count() + at() for the same key)

• In many cases these maps are small (contain a few values),

– Although some might be pretty big

– Try to preallocate some slots during map construction to reduce malloc traffic

Visitor Boilerplate: Caveats & Observations

14

• Rewrite code so pointers to map values do not escape

– Store pointer to current node instead

• Use abseil swiss map (flat_hash_map) implementation

– Modern header-only drop-in replacement of std::unordered_map with lots of

useful tweaks and decent performance.

– Seems an excellent choice for the purpose.

– Already available due to protobuf abseil dependency.

• Rewrite the code not to do unnecessary double lookups

• Preallocate 16 map slots by default (single memory allocation for small
map)

Visitor Boilerplate: Solution

15

Results

16

Results

16

25% reduction of compile time!

Further analysis

17

TypeMap

TypeMap
TypeMap

TypeMap
TypeMap

TypeMap
ReferenceMap

• Both ReferenceMap and TypeMap are recalculated from scratch after every (!) IR
modification

– Ignore this for a moment and take a look under the hood: bunch of ordered_map’s

• ordered_map is routinely used in P4C codebase

– even when there is no iteration done at all

• ordered_map is terribly expensive:

– It’s essentially std::map<Key*,	std::list_iterator>	+	std::list<std::pair<Key,	Value>>

– Huge memory overhead (at least 8 pointers per entry!)

– Slow lookup time

– Huge malloc traffic

• There are some double lookups performed as well

Expensive IR modifications

18
As no iteration is done, let’s simply switch to abseil maps

• GC is overly conservative

– Needs to scan whole memory

– Cannot use compiler annotations for pointer locations like in managed languages

– Needs to memset(0,	&data,	sizeof(data)) on allocation / deallocation

• GC is expensive: at least 25% of runtime overhead

• GC is unpredictable:

– Leads to memory usage spikes

– Leads to 20-30% of execution time differences on small code changes / allocation differences

• Poor coding practices: lots of code simply leak objects with clear runtime for no reason

• PassManager owns passes:

– Extends the lifetime of pass internal state (even if pass is finished)

– Could result in OOM due to large peak memory consumption

Malloc traffic & GC

19

Results (maps + use-def malloc traffic)

20

Results (maps + use-def malloc traffic)

20

Another 40% reduction….

• Both ReferenceMap and TypeMap are recalculated from scratch after every (!) IR
modification

– TypeMap involves whole-program type inference / type checking

– ReferenceMap involves whole-program name / declaration resolution

• Often recalculated before every pass execution

– Even if we’d only need couple of declarations / types

– Standard pass combo: ResolveReferences	+	TypeChecking	+	Pass

• Could be recalculated multiple times during pass execution

– Inliner does this after every successful function inlining

– Lots of PassRepeated cases

– Some type checking is done at every MethodInstance::resolve() call

– …

ReferenceMap / TypeMap rants

21

• Use ResolutionContext pass mixin

– Performs declaration resolution on fly & caches results

– Requires more accurate context tracking and context inheritance

– Resolves within current context only: cannot be used to query declarations in

the context of callee from the caller

• Ported almost the whole frontend, except few places where
significant refactoring would be required

• Midend is still there as-is except passes shared with frontend

ReferenceMap elimination

22

• Improved some common classes internals (e.g. IndexedVector<T>)

• Improved cstring cache to reduce number of lookups

• Added string_map<Value> – same as ordered_map<cstring,	Value>, but
done properly

• TypeChecking / TypeInference improvements: TypeChecking is a proper
Inspector now

– Do not clone() everything just to immediately drop it

• Improve def-use memory consumption even more (both transient and
peak)

More changes & improvements

23

Results: before vs now

24
Overall 3.5x improvement

• Running ninja	check-p4 in 10 threads (not apples-to-apples
though):

• Before: 
p4				=	1170.63	sec*proc	(1216	tests) 
Total	Test	time	(real)	=	117.43	sec

• After: 
p4				=	730.66	sec*proc	(1248	tests) 
Total	Test	time	(real)	=		73.39	sec

check-p4 times

25

• 43k lines of real P4 code (5x times larger than switch_20160512 app)

• Compile time before (P4C v1.2.4.8): 396.45 seconds

• Compile time after (P4C v1.2.4.15): 56.9 seconds

• Overall 6.97x improvement!

• Still pretty slow and more speedup is desired!

Results: large downstream app

26

• IR is immutable

– Lots of overheads here and there

– P4C just allocates memory and does clone() majority of the time

• Reduce memory allocations & overheads as much as possible:

– Switch to reference counting?

– Try to allocate lots of things inline (aka “trailing objects”)

– Allocate IR nodes from some arena / pool

– Eliminate ReferenceMap & TypeMap entirely

• Reduce Visitor overhead:

– Do not do unnecessary clone() in Transform

– Track visited nodes somehow better?

• Maybe some other IR?

– MLIR FTW?

Lessons learned & ToDo

27

Thank You

• Small change requires cloning of the whole IR subtree

• No sane way to update side structures on IR change

• No parent links: need to establish use-user relationship on-fly

– Requires context lookup

– Or even subtree walk

• No IR ownership

– Just some objects allocated from global heap

• Low-level access to IR

– One can create IR nodes anywhere

Immutable IR design rants

29

