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Two very important technologies, so far unconnected 

○ A new synonym for “Ubiquitous”
■ If a computing device is doing 

something useful, it is more than 

likely running Linux

○ Mature API for HW offloads (via 

vendor driver)

○ Powerful TC abstraction

■ Consistent regardless of 

deployment in SW or HW

○ Standardized language for describing

datapaths, whether in HW or SW

○ Commoditization happening with native

P4 support on xPUS (Intel andAMD)

■ Intel IPU ES 2100 support available

○ Large consumers of NICs value the role of 

a minimal P4 for implementation as well 

as behavioral description of datapath

○ New use cases are emerging, such as 

Microsoft DASH



We built a bridge!  

P4TC is the bridge, for growing the Network Programmability ecosystem

● Datapath definition using P4

○ Linux kernel native P4 implementation

○ Mundane developer knowledge automated into compiler

■ knowledge shift to system (and P4) from kernel skills

■ Zero upstream effort

● Same interfaces for either SW or HW datapaths

○ TC offload functionality

○ Intel IPU ES 2100 implementation to be discussed in this presentation



● TC based kernel-native P4 implementation

● Learn from previous experiences (tc flower, u32, switchdev, etc) and scale
○ Kernel independence

○ Control plane transaction rate and latency

● P4Architecture Independence

○ Currently PNA with some extra “constructs”

■ Not hard to add other architectures

■ This is about progressing network programmability in addition to expanding P4 reach

● Use of P4 compiler backend
• The P4-TC compiler backend generates script files for the TC implementation in Linux kernel 

(from version 6.3.x onwards).

• The P4-TC compiler backend reuses code from the existing p4c-ebpf backend

● Vendor Independent interfacing
○ No need to deal with multiple vendor abstraction transformations (and multiple indirections)

Introduction to P4-TC  



P4TC: Building On TC Offload

● Datapath definition using P4
○ Generate the datapath for both s/w and vendor h/w

■ Functional equivalence between sw and hw

● P4 Linux kernel-native implementation
○ Kernel TC-based software datapath and Kernel-based HW datapath offload

■ Understood Infra tooling which already has deployments

○ Seamless software and hardware symbiosis

○ Functional equivalence whether offloading or s/w datapaths

■ Bare Metal, VMs, or Containers

○ Ideal for datapath specification

■ test in s/w container, VM, etc) then offload when hardware is available



P4TC Software Datapath Workflow

Generated
1. P4TC Template (Loaded via generated) script

2. P4TC Introspection json (used by CP)

3. eBPF s/w datapath (at tc and/or xdp level)

*Per packet execution engine

(compiled and loaded when instantiating)



P4TC Workflow With HW offload

HW offload path also generates:
● Binary hardware blob

○ Compatible with vendor hardware

○ Loaded via firmware upload mechanisms



P4TC Runtime SW Datapath

● eBPF serves as per packet exec engine

○ Parser, control block and deparser

● P4 objects that require control state reside

in TC domain (attached to netns)

○ Actions, externs, pipeline, tables and

their attributes (default hit/miss

actions, etc)

○ Kfunc to access them from ebpf

when needed



P4TC New Datapath With HW offload



p4-runtime create \
 l2_exact_match/l2_fwd/mac/macAddr 10:10:10:10:10:10 prio 16 skip_sw

P4-TC Kernel Classifier

IXD driver

P4-TC ops handler

ndo_setup_tc

Target abstraction SW

P4 Compiler

l2_match.pkg + 
hw_config.json

introspection.json

Representors
(switchdev)

LLD (Low Level Driver) 
Layer

IPU Init

Exception Data Path
TX/RX

Pipe Manager

Intel s IPU

Linux kernel

Kernel Protocol Stack/Packet Path

l2_match.template

Target abstracted SW

Target specific SW

IPU comms 
chnl

IPU conf 
queues

Router ACL NAT

P4TC driver architecture for Intel devices

struct p4tc_offload_data {                                                                                                   
        struct work_struct work;
        struct netlink_ext_ack *extack;
        struct p4tc_pipeline *pipeline;
        u32 pipe_id;
        u32 table_id;
        enum p4tc_offload_cmd cmd;
        enum p4tc_offload_obj obj;
        union {
             struct p4tc_offload_table_entry entry;
        };
};

table l2_fwd {
        key = {
            hdr.ethernet.dstAddr: exact;
        }
        actions = {
            drop;send;
        }
        const default_action = drop;
    }

$TC p4template create table/p4tc_demo_simple_l2/MainControlImpl/l2_fwd \
        tblid 1 \
        keysz 48 nummasks 8 tentries 2048 \
        table_acts act name p4tc_demo_simple_l2/MainControlImpl/send flags tableonly \
        act name p4tc_demo_simple_l2/MainControlImpl/drop flags defaultonly

"tables" : [
    {
      "name" : "MainControlImpl/l2_fwd",
      "id" : 1,
      "tentries" : 2048,
"keyfields" : [
        {
          "id" : 1,
          "name" : "dstAddr",
          "type" : "macaddr",
          "match_type" : "exact",
          "bitwidth" : 48
        }
      ],
      "actions" : [
        {
          "id" : 2,
          "name”: "MainControlImpl.drop",
          …
          },
}



Switchdev Mode with 2 UL PRs On Host0(Uplink to VM)
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• Key progress
• Transition to Compiler backend



P4 compiler workflow



P4 compilation workflow for P4TC

Focus Area



• Introspection json file - Introspection json file is used 
for control plane programming.

• Template File – This file is a shell script that forms 
template definitions for various P4 objects (e.g. tables, 
actions). 

• EBPF based Parser C file – This C file represents the 
parser definition. 

• EBPF based Control blocks C file – This C files defines 
rest of the software datapath (i.e. control blocks and 
deparser) 

• EBPF Header file – The header File defines all the 
structure definitions, include files.

Output files



Thank You
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