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Two very important technologies, so far unconnected

o A new synonym for “Ubiquitous”

m If a computing device is doing
something useful, it is more than
likely running Linux

o Mature API for HW offloads (via
vendor driver)

o Powerful TC abstraction

m Consistent regardless of
deployment in SW or HW

Standardized language for describing
datapaths, whether in HW or SW

Commoditization happening with native
P4 support on xPUS (Intel and AMD)

m Intel IPU ES 2100 support available
Large consumers of NICs value the role of
a minimal P4 for implementation as well
as behavioral description of datapath

New use cases are emerging, such as
Microsoft DASH



We built a bridge!

PATC Is the bridge, for growing the Network Programmability ecosystem

e Datapath definition using P4
o Linux kernel native P4 implementation

o Mundane developer knowledge automated into compiler
m knowledge shift to system (and P4) from kernel skills
m Zero upstream effort
e Same interfaces for either SW or HW datapaths
o TC offload functionality
o Intel IPU ES 2100 implementation to be discussed in this presentation



Introduction to P4-TC

TC based kernel-native P4 implementation

Learn from previous experiences (tc flower, u32, switchdev, etc) and scale

o  Kernel independence
o  Control plane transaction rate and latency

P4 Architecture Independence

o Currently PNAwith some extra “constructs”
m Not hard to add other architectures
m Thisis about progressing network programmability in addition to expanding P4 reach

Use of P4 compiler backend
 The P4-TC compiler backend generates script files for the TC implementation in Linux kernel
(from version 6.3.x onwards).

 The P4-TC compiler backend reuses code from the existing p4c-ebpf backend

Vendor Independent interfacing
o  No need to deal with multiple vendor abstraction transformations (and multiple indirections)



P4TC: Building On TC Offload

e Datapath definition using P4 RO
o Generate the datapath for both s/w and vendor h/w
.- Functional equw.alen(.:e petween sw an.d hw Input=X G S oUpUL=Y
e P4 Linux kernel-native implementation > i >
o Kernel TC-based software datapath and Kernel-based HW datapath offload o 2
m Understood Infra tooling which already has deployments H
o  Seamless software and hardware symbiosis =l T
o Functional equivalence whether offloading or s/w datapaths | 3E | o
m Bare Metal, VMs, or Containers
o ldeal for datapath specification
m testin s/w container, VM, etc) then offload when hardware is available
nput=X_ (0 output=Y




P4TC Software Datapath Workflow
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P4TC Workflow With HW offload
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TC Infrastructure

P4TC Runtime SW Datapath
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eBPF serves as per packet exec engine

o Parser, control block and deparser
P4 objects that require control state reside
In TC domain (attached to netns)

o Actions, externs, pipeline, tables and
their attributes (default hit/miss
actions, etc)

o Kfunc to access them from ebpf
when needed



P4TC New Datapath With HW offload

p4tc introspection
(Json) (generated)

TC Infrastructure | PATC NetmmkA (obj
tc ebpf code €---=- ; QRQPXPS—)
(generated) P4 runtime N
A : objects ML
AN i} R;zlsrﬁs:‘a::tel (CLCEMOUEINEN skip hw
etc) : T
skip_sw + pipeline
: continuation
kfunc (objltable |
CRUDXPS) ; _
XDP code €---"--------- Driver P4 runtime
(generated) < | objects (tables, &S
externs, etc)

Hardware

blob (generated




P4TC driver architecture for Intel devices

table 12_fwd {
key = {
hdr.ethernet.dstAddr: exact;

}
actions ={
drop;send;

}

const default_action = drop;

"tables" : [
{
"name" : "MainControlimpl/I2_fwd",
"id": 1,
"tentries" : 2048,
"keyfields" : [
{
"id": 1,
"name" : "dstAddr",
"type" : "macaddr",
"match_type" : "exact",
"bitwidth" : 48
}
1,
"actions" : [
{
"id" : 2,
"name”: "MainControlimpl.drop",

b

12_match.pkg +

introspection.json

hw_config.json

pa-runtime create \

12_exact_match/I2_fwd/mac/macAddr 10:10:10:10:10:10 prio 16 skip_sw

ndo_setup_tc

thlid 1\
keysz 48 nummasks 8 tentries 2048 \

STC p4template create table/p4dtc_demo_simple_12/MainControlimpl/I2_fwd \

table_acts act name p4tc_demo_simple_I2/MainControlimpl/send flags tableonly \
act name p4tc demo simple 12/MainControllmpl/drop flags defaultonly

P4-TC ops handler

Pipe Manager

struct p4tc_offload_data {

struct work_struct work;
struct netlink_ext_ack *extack;
struct p4tc_pipeline *pipeline;
u32 pipe_id;
u32 table_id;
enum p4tc_offload _cmd cmd;
enum p4tc_offload _obj obj;
union {
struct p4tc_offload_table_entry entry;
2

)

Target abstracted SW
I Target specific SW

IPU Init IPU comms IPU conf
chnl queues
LLD (Low Level Driver)
Layer
IXD driver
Linux kernel




Switchdev Mode with 2 UL PRs On HostO(Uplink to VM)
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P4 compilation workflow for P4TC
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Output files

Introspection json file - Introspection json file is used
for control plane programming.

Template File — This file is a shell script that forms
template definitions for various P4 objects (e.g. tables,
actions).

EBPF based Parser C file — This C file represents the
parser definition.

EBPF based Control blocks C file — This C files defines
rest of the software datapath (i.e. control blocks and
deparser)

EBPF Header file — The header File defines all the
structure definitions, include files.
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Thank You
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