
Compiler-assisted kernel-based P4 pipeline

offloading using Intel IPU

Deb Chatterjee
Neha Singh

Two very important technologies, so far unconnected

○ A new synonym for “Ubiquitous”
■ If a computing device is doing

something useful, it is more than

likely running Linux

○ Mature API for HW offloads (via

vendor driver)

○ Powerful TC abstraction

■ Consistent regardless of

deployment in SW or HW

○ Standardized language for describing

datapaths, whether in HW or SW

○ Commoditization happening with native

P4 support on xPUS (Intel andAMD)

■ Intel IPU ES 2100 support available

○ Large consumers of NICs value the role of

a minimal P4 for implementation as well

as behavioral description of datapath

○ New use cases are emerging, such as

Microsoft DASH

We built a bridge!

P4TC is the bridge, for growing the Network Programmability ecosystem

● Datapath definition using P4

○ Linux kernel native P4 implementation

○ Mundane developer knowledge automated into compiler

■ knowledge shift to system (and P4) from kernel skills

■ Zero upstream effort

● Same interfaces for either SW or HW datapaths

○ TC offload functionality

○ Intel IPU ES 2100 implementation to be discussed in this presentation

● TC based kernel-native P4 implementation

● Learn from previous experiences (tc flower, u32, switchdev, etc) and scale
○ Kernel independence

○ Control plane transaction rate and latency

● P4Architecture Independence

○ Currently PNA with some extra “constructs”

■ Not hard to add other architectures

■ This is about progressing network programmability in addition to expanding P4 reach

● Use of P4 compiler backend
• The P4-TC compiler backend generates script files for the TC implementation in Linux kernel

(from version 6.3.x onwards).

• The P4-TC compiler backend reuses code from the existing p4c-ebpf backend

● Vendor Independent interfacing
○ No need to deal with multiple vendor abstraction transformations (and multiple indirections)

Introduction to P4-TC

P4TC: Building On TC Offload

● Datapath definition using P4
○ Generate the datapath for both s/w and vendor h/w

■ Functional equivalence between sw and hw

● P4 Linux kernel-native implementation
○ Kernel TC-based software datapath and Kernel-based HW datapath offload

■ Understood Infra tooling which already has deployments

○ Seamless software and hardware symbiosis

○ Functional equivalence whether offloading or s/w datapaths

■ Bare Metal, VMs, or Containers

○ Ideal for datapath specification

■ test in s/w container, VM, etc) then offload when hardware is available

P4TC Software Datapath Workflow

Generated
1. P4TC Template (Loaded via generated) script

2. P4TC Introspection json (used by CP)

3. eBPF s/w datapath (at tc and/or xdp level)

*Per packet execution engine

(compiled and loaded when instantiating)

P4TC Workflow With HW offload

HW offload path also generates:
● Binary hardware blob

○ Compatible with vendor hardware

○ Loaded via firmware upload mechanisms

P4TC Runtime SW Datapath

● eBPF serves as per packet exec engine

○ Parser, control block and deparser

● P4 objects that require control state reside

in TC domain (attached to netns)

○ Actions, externs, pipeline, tables and

their attributes (default hit/miss

actions, etc)

○ Kfunc to access them from ebpf

when needed

P4TC New Datapath With HW offload

p4-runtime create \
 l2_exact_match/l2_fwd/mac/macAddr 10:10:10:10:10:10 prio 16 skip_sw

P4-TC Kernel Classifier

IXD driver

P4-TC ops handler

ndo_setup_tc

Target abstraction SW

P4 Compiler

l2_match.pkg +
hw_config.json

introspection.json

Representors
(switchdev)

LLD (Low Level Driver)
Layer

IPU Init

Exception Data Path
TX/RX

Pipe Manager

Intel s IPU

Linux kernel

Kernel Protocol Stack/Packet Path

l2_match.template

Target abstracted SW

Target specific SW

IPU comms
chnl

IPU conf
queues

Router ACL NAT

P4TC driver architecture for Intel devices

struct p4tc_offload_data {
 struct work_struct work;
 struct netlink_ext_ack *extack;
 struct p4tc_pipeline *pipeline;
 u32 pipe_id;
 u32 table_id;
 enum p4tc_offload_cmd cmd;
 enum p4tc_offload_obj obj;
 union {
 struct p4tc_offload_table_entry entry;
 };
};

table l2_fwd {
 key = {
 hdr.ethernet.dstAddr: exact;
 }
 actions = {
 drop;send;
 }
 const default_action = drop;
 }

$TC p4template create table/p4tc_demo_simple_l2/MainControlImpl/l2_fwd \
 tblid 1 \
 keysz 48 nummasks 8 tentries 2048 \
 table_acts act name p4tc_demo_simple_l2/MainControlImpl/send flags tableonly \
 act name p4tc_demo_simple_l2/MainControlImpl/drop flags defaultonly

"tables" : [
 {
 "name" : "MainControlImpl/l2_fwd",
 "id" : 1,
 "tentries" : 2048,
"keyfields" : [
 {
 "id" : 1,
 "name" : "dstAddr",
 "type" : "macaddr",
 "match_type" : "exact",
 "bitwidth" : 48
 }
],
 "actions" : [
 {
 "id" : 2,
 "name”: "MainControlImpl.drop",
 …
 },
}

Switchdev Mode with 2 UL PRs On Host0(Uplink to VM)

UPLINK1

UP1_PR
(4,1,0)

ICPF

VF1
netdev

VF1
PCIe IF

VF1
PCIe IF

PF1 VSIVF1 VSI

VF2
PCIe IF

VF2 VSI

eSWITCH

VF2
netdev

HOST0

IPU E2100

VM Container

VF1-PR VF2-PR

IDPF IDPF

CP VSI

PF1
VSI

CP VSI

SDN
Control
and DP

UPLINK2

UL2_PR
(4,2,1)

APF
PCIe IF (1452)

PF2 VSI

PF2
VSI

IDPF

APF
VSI1

APF
VSI2

APF PCIe IF

HosT
UL1

netdev
(0,0,0)

Host
UL2

netdev
(0,1,1)

Host
LAG

netdev

ACC
APF

ACC
CPF

Host
UL1
PR

Host
LAG

netdev

Host
UL2
PR

InfraP4d

APF
VSI2

CPF
PCIe IF(1453)

VFIO-PCI

• Key progress
• Transition to Compiler backend

P4 compiler workflow

P4 compilation workflow for P4TC

Focus Area

• Introspection json file - Introspection json file is used
for control plane programming.

• Template File – This file is a shell script that forms
template definitions for various P4 objects (e.g. tables,
actions).

• EBPF based Parser C file – This C file represents the
parser definition.

• EBPF based Control blocks C file – This C files defines
rest of the software datapath (i.e. control blocks and
deparser)

• EBPF Header file – The header File defines all the
structure definitions, include files.

Output files

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: P4TC: Building On TC Offload
	Slide 6: P4TC Software Datapath Workflow
	Slide 7: P4TC Workflow With HW offload
	Slide 8: P4TC Runtime SW Datapath
	Slide 9: P4TC New Datapath With HW offload
	Slide 10
	Slide 11: Switchdev Mode with 2 UL PRs On Host0(Uplink to VM)
	Slide 12
	Slide 13
	Slide 14
	Slide 15

