Compiler-assisted kernel-based P4 pipeline

offloading using Intel IPU

Deb Chatterjee
Neha Singh




Two very important technologies, so far unconnected

o A new synonym for “Ubiquitous”

m If a computing device is doing
something useful, it is more than
likely running Linux

o Mature API for HW offloads (via
vendor driver)

o Powerful TC abstraction

m Consistent regardless of
deployment in SW or HW

Standardized language for describing
datapaths, whether in HW or SW

Commoditization happening with native
P4 support on xPUS (Intel and AMD)

m Intel IPU ES 2100 support available
Large consumers of NICs value the role of
a minimal P4 for implementation as well
as behavioral description of datapath

New use cases are emerging, such as
Microsoft DASH



We built a bridge!

PATC Is the bridge, for growing the Network Programmability ecosystem

e Datapath definition using P4
o Linux kernel native P4 implementation

o Mundane developer knowledge automated into compiler
m knowledge shift to system (and P4) from kernel skills
m Zero upstream effort
e Same interfaces for either SW or HW datapaths
o TC offload functionality
o Intel IPU ES 2100 implementation to be discussed in this presentation



Introduction to P4-TC

TC based kernel-native P4 implementation

Learn from previous experiences (tc flower, u32, switchdev, etc) and scale

o  Kernel independence
o  Control plane transaction rate and latency

P4 Architecture Independence

o Currently PNAwith some extra “constructs”
m Not hard to add other architectures
m Thisis about progressing network programmability in addition to expanding P4 reach

Use of P4 compiler backend
 The P4-TC compiler backend generates script files for the TC implementation in Linux kernel
(from version 6.3.x onwards).

 The P4-TC compiler backend reuses code from the existing p4c-ebpf backend

Vendor Independent interfacing
o  No need to deal with multiple vendor abstraction transformations (and multiple indirections)



P4TC: Building On TC Offload

e Datapath definition using P4 RO
o Generate the datapath for both s/w and vendor h/w
.- Functional equw.alen(.:e petween sw an.d hw Input=X G S oUpUL=Y
e P4 Linux kernel-native implementation > i >
o Kernel TC-based software datapath and Kernel-based HW datapath offload o 2
m Understood Infra tooling which already has deployments H
o  Seamless software and hardware symbiosis =l T
o Functional equivalence whether offloading or s/w datapaths | 3E | o
m Bare Metal, VMs, or Containers
o ldeal for datapath specification
m testin s/w container, VM, etc) then offload when hardware is available
nput=X_ (0 output=Y




P4TC Software Datapath Workflow

P4 Target/arch
Program || constraints

P4 Compiler
Frontend
+ Core

P4TC
ll> Backend

JT
/ ebpf p\r/og ram \

P4 control
parser
metadata

!

Clang compiler
with ebpf
backend

N /

N

)

PATC

Introspection

info

[

— 5

>

>

&

P4TC |
pipeline

P4TC
Tables

P4TC
Actions

PATC
Externs

/

N4

saje[dway 1mose weibold vd

Load Program via

bpf system call

Load PATC Program
via Netlink

7

V4

Kernel

Hardware

Generated
PATC Template (Loaded via generated) script
P4TC Introspection json (used by CP)

eBPF s/w datapath (at tc and/or xdp level)

1.
2.
3.

*Per
(com

packet execution engine

niled and loaded when instantiating)



P4TC Workflow With HW offload

P4 Target/arch
Program | constraints

i

PATC

info

e

_’

»

<

P4TC
pipeline

PATC
Tables

P4TC
Actions
PATC
Externs

\

>

i

» Introspection

sajejdiua) n1ose weiboid 74

P4 Compiler PATC
Frontend :{> Backend
+ Core
, NS
/ ebpf program \
P4 control
parser
metadata
~ !
Vendor :
Clang compiler
Backend with ebpf
backend
Load Prog+ \ /
metadata <}
using Load Program via
deviink bpf system call

Load PATC Program

via Netlink

57

57

Kernel

P4 program hardware
abstraction Hardware

HW offload path also generates:
Binary hardware blob

O
O

Compatible with vendor hardware
Loaded via firmware upload mechanisms



TC Infrastructure

P4TC Runtime SW Datapath

p4tc introspection
(Json) (generated)

tc ebpf code
(generated)

-

Resubmit

/ "\ ﬂ |§ Recirculate

PATC

V-

Netlink (obj
CRUDXPS)

P4 runtime

objects

(tables, externs,

etc)

kfunc (obj/table

XDP code
(generated)

CRUDXPS)

------------- Driver

Hardware

eBPF serves as per packet exec engine

o Parser, control block and deparser
P4 objects that require control state reside
In TC domain (attached to netns)

o Actions, externs, pipeline, tables and
their attributes (default hit/miss
actions, etc)

o Kfunc to access them from ebpf
when needed



P4TC New Datapath With HW offload

p4tc introspection
(Json) (generated)

TC Infrastructure | PATC NetmmkA (obj
tc ebpf code €---=- ; QRQPXPS—)
(generated) P4 runtime N
A : objects ML
AN i} R;zlsrﬁs:‘a::tel (CLCEMOUEINEN skip hw
etc) : T
skip_sw + pipeline
: continuation
kfunc (objltable |
CRUDXPS) ; _
XDP code €---"--------- Driver P4 runtime
(generated) < | objects (tables, &S
externs, etc)

Hardware

blob (generated




P4TC driver architecture for Intel devices

table 12_fwd {
key = {
hdr.ethernet.dstAddr: exact;

}
actions ={
drop;send;

}

const default_action = drop;

"tables" : [
{
"name" : "MainControlimpl/I2_fwd",
"id": 1,
"tentries" : 2048,
"keyfields" : [
{
"id": 1,
"name" : "dstAddr",
"type" : "macaddr",
"match_type" : "exact",
"bitwidth" : 48
}
1,
"actions" : [
{
"id" : 2,
"name”: "MainControlimpl.drop",

b

12_match.pkg +

introspection.json

hw_config.json

pa-runtime create \

12_exact_match/I2_fwd/mac/macAddr 10:10:10:10:10:10 prio 16 skip_sw

ndo_setup_tc

thlid 1\
keysz 48 nummasks 8 tentries 2048 \

STC p4template create table/p4dtc_demo_simple_12/MainControlimpl/I2_fwd \

table_acts act name p4tc_demo_simple_I2/MainControlimpl/send flags tableonly \
act name p4tc demo simple 12/MainControllmpl/drop flags defaultonly

P4-TC ops handler

Pipe Manager

struct p4tc_offload_data {

struct work_struct work;
struct netlink_ext_ack *extack;
struct p4tc_pipeline *pipeline;
u32 pipe_id;
u32 table_id;
enum p4tc_offload _cmd cmd;
enum p4tc_offload _obj obj;
union {
struct p4tc_offload_table_entry entry;
2

)

Target abstracted SW
I Target specific SW

IPU Init IPU comms IPU conf
chnl queues
LLD (Low Level Driver)
Layer
IXD driver
Linux kernel




Switchdev Mode with 2 UL PRs On HostO(Uplink to VM)

ACC ACC
Container APF [ Zr?tl I!. CPF

[ InfraP4d }

\ 4 v v v v
IDPF j ﬁPF [ IDPF }

VFT | VF2 7 PP
PCle IF PCle IF ARF PEIE I PCIZ/IF (1452 PCle IF(1453

—ezvs || g | usp | Privsi g /Pravs
vFLVSI JEE2VSI Vst Privsi 4 /5

{ VFIO-PCI 1

_—

* Key progress
* Transition to Compiler backend

SN



Arch
definition
(e.g. pna.p4)

User
program

P4

P4 compiler workflow

Control-plane
AP

f*

gFront-end » IR » Mid-end B |R # Back-end §

Output file

Debugging
information

Architecture-
specific
policies (e.g.
PATC)

Architecture
Details (e.g.
PATC)




P4 compilation workflow for P4TC

P4 Target / Arch
Program constraints
Open Source P4 ntrosooiee Temolate i EBPF \( espF \( EBPF
Compiler Frontend - F'FI] e based based
and Midend e 'S o Control Header
\ )\ blocks.c )\ file J,
PATC Output Files l
Vendor Hardware _
Backend P4TC Template using
Netlink
l :
[ Hardware Target ] Control
i ——
Binary hw_configjson| Plane Stack KERNEL ‘ Output files for s/w

and h/w data path

l

HARDWARE |

Output files for
Skip hiw = false s/w data path

Focus Area




Output files

Introspection json file - Introspection json file is used
for control plane programming.

Template File — This file is a shell script that forms
template definitions for various P4 objects (e.g. tables,
actions).

EBPF based Parser C file — This C file represents the
parser definition.

EBPF based Control blocks C file — This C files defines
rest of the software datapath (i.e. control blocks and
deparser)

EBPF Header file — The header File defines all the
structure definitions, include files.

-

|

Introspection

json

Template
File

\.

L

EBPF
based
Parser.c

"‘!

/

(" EBPF
based
Control

9 blocks.c y

(" EBPF )
based
Header

9 file y

P4TC Qutput Files




Thank You




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: P4TC: Building On TC Offload
	Slide 6: P4TC Software Datapath Workflow
	Slide 7: P4TC Workflow With HW offload
	Slide 8: P4TC Runtime SW Datapath
	Slide 9: P4TC New Datapath With HW offload
	Slide 10
	Slide 11: Switchdev Mode with 2 UL PRs On Host0(Uplink to VM)
	Slide 12
	Slide 13
	Slide 14
	Slide 15

