

Towards Real-Time Intrusion Detection in P4-Programmable 5G User Plane Functions

Aristide Tanyi-Jong Akem, Marco Fiore

IMDEA Networks Institute, Madrid, Spain

Euro'P4 2024

em Towards Real-Time Intrusion Detection in P4-Programmable 5G User Plane Functions 28/10/2024

em Towards Real-Time Intrusion Detection in P4-Programmable 5G User Plane Functions 28/10/2024

In-network machine learning

- Machine Learning (ML) is playing a key role in network automation
- In Software-Defined Networking (SDN), these models run in the control plane

xem Towards Real-Time Intrusion Detection in P4-Programmable 5G User Plane Functions 28/10/2024

In-network machine learning

- Control plane ML requires back-and-forth communication with the user plane
- This induces ms-level delays which are undesirable in low-latency applications

networks

tem Towards Real-Time Intrusion Detection in P4-Programmable 5G User Plane Functions 28/10/2024

The advent of programmable switches and domain-specific languages like P4 has made it possible to deploy trained ML models into the user plane

kem Towards Real-Time Intrusion Detection in P4-Programmable 5G User Plane Functions 28/10/2024

The advent of programmable switches and domain-specific languages like P4 has made it possible to deploy trained ML models into the user plane

m Towards Real-Time Intrusion Detection in P4-Programmable 5G User Plane Functions 28/10/2024

In-network machine learning

C. Zheng, X. Hong, D. Ding, S. Vargaftik, Y. Ben-Itzhak and N. Zilberman, "In-Network Machine Learning Using Programmable Network Devices: A Survey," in *IEEE Communications Surveys & Tutorials*, vol. 26, no. 2, 2024.

Outline

em Towards Real-Time Intrusion Detection in P4-Programmable 5G User Plane Functions 28/10/2024

5G User Plane Function (UPF)

[1] R. MacDavid et al. A P4-based 5G user plane function. In SOSR. ACM, 2021.

[2] A. Bose et al. AccelUPF: accelerating the 5G user plane using programmable hardware. In SOSR. ACM, 2022.

Aristide T-J. Akem Towards Real-Time Intrusion Detection in P4-Programmable 5G User Plane Functions 28/10/2024

UPF packet processing flow

[1] R. MacDavid et al. A P4-based 5G user plane function. In SOSR. ACM, 2021.

Outline

em Towards Real-Time Intrusion Detection in P4-Programmable 5G User Plane Functions 28/10/2024

Intrusion detection in the UPF with In-switch ML

Tree-based models are most suitable for in-switch ML

• Their simple logical structure makes them easy to map to switch pipelines [1]

• They still outperform deep learning on tabular data [2]

[1] Zhaoqi Xiong et al. Do Switches Dream of Machine Learning? Toward In-Network Classification. In HotNets. ACM, 2019.[2] Léo Grinsztajn, et al. Why do tree-based models still outperform deep learning on typical tabular data? In NeurIPS, 2022.

Control plane

User plane

Aristide T-J. Akem Towards Real-Time Intrusion Detection in P4-Programmable 5G User Plane Functions 2

28/10/2024

User plane

In-switch model implementation

24 uc3m Universidad Carlos III de Madrid

Use case: intrusion detection in a 5G test network

Dataset: 5G-NIDD

- Attackers target a server deployed in the 5GTN MEC
- 8 Attacks: DoS and port scans
- **DoS attacks:** ICMP Flood, UDP Flood, SYN Flood, HTTP Flood, and Slowrate DoS
- **Port scans:** SYN Scan, TCP Connect Scan, and UDP Scan
- **Task:** Detect and separate the 8 attacks from benign traffic

Model: Decision tree with maximum depth 37, using 10 features

Features: packet length, TTL, destination port, source port, TCP window size, TCP Push flag, TCP header length, TCP Reset flag, TCP Fin flag, and UDP length

Metrics: TPR, FPR, TNR, FNR, F1 Score; macro & weighted averages

Results – Classification accuracy

Class	F1 Score	TPR	FPR	TNR	FNR
Benign	99.993%	99.986%	0.000%	100.000%	0.014%
Slowrate DoS	90.507%	87.145%	0.663%	99.337%	12.855%
SYN Flood	100.000%	100.000%	0.000%	100.000%	0.000%
UDP Scan	99.727%	99.586%	0.000%	100.000%	0.414%
ICMP Flood	99.397%	100.000%	0.000%	100.000%	0.000%
TCP Connect Scan	99.589%	99.224%	0.000%	100.000%	0.776%
HTTP Flood	93.874%	96.292%	1.674%	98.326%	3.708%
SYN Scan	99.698%	99.891%	0.002%	99.998%	0.109%
UDP Flood	100.000%	100.000%	0.000%	100.000%	0.000%
Macro Avg	98.087%	98.014%	0.260%	99.740%	1.986%
Weighted Avg	97.985%	97.998%	0.338%	99.662%	2.002%

Use case: intrusion detection in a 5G test network

Results – Classification accuracy

Class	F1 Score	TPR	FPR	TNR	FNR
Benign	99.993%	99.986%	0.000%	100.000%	0.014%
Slowrate DoS	90.507%	87.145%	0.663%	99.337%	12.855%
SYN Flood	100.000%	100.000%	0.000%	100.000%	0.000%
UDP Scan	99.727%	99.586%	0.000%	100.000%	0.414%
ICMP Flood	99.397%	100.000%	0.000%	100.000%	0.000%
TCP Connect Scan	99.589%	99.224%	0.000%	100.000%	0.776%
HTTP Flood	93.874%	96.292%	1.674%	98.326%	3.708%
SYN Scan	99.698%	99.891%	0.002%	99.998%	0.109%
UDP Flood	100.000%	100.000%	0.000%	100.000%	0.000%
Macro Avg	98.087%	98.014%	0.260%	99.740%	1.986%
Weighted Avg	97.985%	97.998%	0.338%	99.662%	2.002%

Use case: intrusion detection in a 5G test network

Results – Resource consumption

SRAM	TCAM	Ternary Match Input Xbar	VLIW	Action Data Bus Bytes	Logical Table ID
1.40%	8.00%	11.50%	2.10%	4.60%	5.70%

Outline

em Towards Real-Time Intrusion Detection in P4-Programmable 5G User Plane Functions 28/10/2024

- We built on successes in in-network ML and hardware accelerated 5G UPFs to enable high-speed network intrusion detection
- Evaluation on a 5G test network dataset shows how an in-switch model can achieve high classification accuracy with low resource usage
- Future work will focus on a full integration of ML inference into the UPF and an experimental evaluation in complete 5G network setting

Thank you!

aristide.akem@imdea.org

This work has been supported by:

Funded by the Horizon Europe programme of the European Union under Grant Agreement No. 101139270 (ORIGAMI)

Project PCI2022-133013 (ECOMOME), funded by MICIU/AEI/10.13039/501100011033 and the European Union "NextGenerationEU"/PRTR.

Project **ORIGAMI**, funded by the Horizon Europe programme of the European Union, under Grant Agreement 101139270.

Towards Real-Time Intrusion Detection in P4-Programmable 5G User Plane Functions 28/10/2024

