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In-Network Cryptography

The use of cryptography in the data plane has shown potential to improve
anonymity, DDoS defense and BF T protocol design.
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ABSTRACT
Enterprise networks face increasing threats against the privacy
their clients. Existing enterprise services like Network Address

persistent, publicly-routable IPv6 address that makes it easier for
an adversary to locate a client and analyze its traffc [13, 27, 53)
tect

hardware switches. PINOT encrypts a client’s IPv4 address ——
with an efficient encryption scheme to hide the address from Aad
downstream ASes and the destination server. PINOT is readily
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deployable, requiring no end-user software or cooperation Figure 1: PINOT setup. Translation (NAT) offer limited privacy protection, at the cost of ~ Most driven. For example,client Abstract One of the most common DDoS attacks, namely SYN floods,
from networks other than the trusted network Where it FUNS.  Jeaye the natwnrl ac chnaun in Fimea 1 Wa s a samien and requiring per-flow state. In this paper, we introduce RAVEN (Rapid  services like Tor [16]. Apple also launched the iCloud Private Relay Desnite decades of mitivation efforts SYN flooding attacks ~ consume server memory until the server is forced to drop
We implement a PINOT prototype on the Barcfoot Tofino efficien servial benign traffic [37,38,581. SYN floods constituted up to 94.7%
switch, deploy PINOT in a campus network, and present  which ¢ s of all DDoS attacks in 2020 [49] and continue to remain a
esults on protecting user identity against public DNS, NTP, g iy bl eritical threat today [50]. Additionally, benign traffic volumes
and WireGuard VPN services. process Cind also continue to grow exponentially, reaching staggering loads
encrypu | of up to hundreds of Gbps in cloud-provider networks [63].
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Programmable switch hardware creates an opportunity to (0 ABSTRACT 1 INTRODUCTION adversa existing solutions have failed to simultaneously provide secu-
build a high-performance anonymity system by offloading M itical Gl (Colhe s Bl e cousinohly il N e employt tity, scalability, and performance [2.3,51,67,72). Designing
privacy functionality to the network. Nevertheless, pro- ~ Compa failures. By (BFT)proto- ters and rely on fault-tolerance protocols to provide high avail- | and practically implementing modem SYN-flooding defenses
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In-Network Cryptography for SCION

Emerging Internet architecture designs advocate for
NG per-packet cryptographic verifications.
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fheSCION =~ ~=  The lack of cryptographic accelerators in networking

Architecture  ~~_“.. hardware has precluded cryptographic computations
in the network core.

Architectures such as SCION are restricted to
implementations in software with throughputs of tens

of Gbps at best.
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Programmable Terabit Switching Architecture

Terabit speed programmable switching architectures, such as PISA, offer a
to implement cryptographic primitives in the data plane.
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Cryptographic Primitives on PISA Switches

Minimum number of pipeline stages for a 128-bit input

Key Size # of Stages per

Algorithm (Bit<) Rounds Round Total Stages
ASCON 128 24 8 192
AES - CMAC? 128 10 5 50
SipHash® 128 10 6 60
HalfSipHash® B4 14 4 56

[11 Archit Bhatnagar, Xin Zhe Khooi, Cha Hwan Song, Mun Choon Chan. 2023. P4EAD: Securing the In-band Control Channels on Commodity Programmable Switches;
[2] Lars-Christian Schulz, Robin Wehner, David Hausheer. 2023. Cryptographic Path Validation for SCION in P4;
[3]Yutaro Yoshinaka, Mio Kochiyama, Yuki Koizumi, Junji Takemasa, Toru Hasegawa. 2024. A Lightweight Anonymity Protocol at Terabit Speeds on Programmable Switches;

[4] Sophia Yoo, Xiaogi Chen. 2021. Secure Keyed Hashing on Programmable Switches.
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Target Properties for a MAC on PISA
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Our answer is P4Chaskey!



The Chaskey MAC Algorithm

Permutation-based MAC algorithm for 32-bit microcontrollers:
* Processes a message minto / blocks of n = /28 bits each through 7 permutation
rounds.

Chaskey Mode of Operation

............................................................................................




Chaskey’s Operations

Chaskey Mode of Operation Chaskey's Permutation Round Operations
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Chaskey for a 128-bit Input Message

Chaskey Mode of Operation

............................................................................................

N —/ —/ \—/
operations on a 128-bit
Input message
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P4Chaskey Design & Implementation



P4Chaskey Design
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P4Chaskey Control Flow Current Round: 0

Ingress Pipeline Egress Pipeline
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P4Chaskey Control Flow Current Round: 0

Ingress Pipeline Egress Pipeline
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0

Current Round

P4Chaskey Control Flow
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P4Chaskey Control Flow Current Round: 4

Ingress Pipeline Egress Pipeline
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Current Round: 4

d|qe]
ysiut{ £axsey)

1

Egress Pipeline

SpuUNoy
uoneINWId

1

J1asied ssa.83

Jasteda(g ssaudu|

i

d|qel
uoISI23(] pJemuoy

J

A

Spunoy
uoljeINWIR

A

9|qel
uoneINWIR] el

Ingress Pipeline

v,

v

A

9|qe|
W] Axjseyy

S

Jasled ssaidu)

P4Chaskey Control Flow

[

_Position in Chaskey's Algorithm

Chaskey Finish Table

Current Round

Operation
Final XOR Operation (v @ ky)




P4Chaskey Permutation Round
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P4Chaskey Operation on Tofino 1

Egress Pipeline

Ingress Pipeline

- . oy,

(4
|

J19s.1eda(] ssa4373

>

1st
[ pass

~

eEn
ysiul Aavsey)

1

~

s

spunoy
uoleINULIR

1

19s1e SS3.137

emitted

chaskey's
internal
state

J1as.seda(] ssausu|

)

~

9|9l
uoISId3(] pJemioy

A

~\

Spunoy
uoneINWLId

A

~

o|qeL
uoIjeINWId 1els

A

~

3|e|
| Aaxsey)

Se e e e e e e e e e e m - - ------=--redirculatedpacket = = = = = = e e e e e e e e e e e e e e e e - - - -

20



How did we evaluate P4Chaskey?



Evaluation Targets

P4Chaskey correctness was assessed by using the results obtained with
Chaskey’s C implementation!!.

Our evaluation has two main targets:

* Demonstrating that our design and P4 implementation of Chaskey for PISA is the
first that enables computing a MAC using a 128-bit key without packet recirculation.

* Measuring the resource usage of P4Chaskey on the target switch platforms.

11 https://mouhabe/wp-content/uploads/chaskeyl2.c I
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https://mouha.be/wp-content/uploads/chaskey12.c

Comparison Against State-of-the-art Solutions

Number of pipeline passes for a 128-bit input message

Key Size Block/Message Pipeline

Target Algorithm (Bits) Size (Bits) Passes
HalfSipHash 64 32 5
Tofino 1
Chaskey 128 128 2
SipHash? 128 64 2
Tofino 2 AES - CMAC3 128 128 2
Chaskey 128 128 R4

[1] Sophia Yoo, Xiaogi Chen. 2021. Secure Keyed Hashing on Programmable Switches;

[2] Yutaro Yoshinaka, Mio Kochiyama, Yuki Koizumi, Junji Takemasa, Toru Hasegawa. 2024. A Lightweight Anonymity Protocol at Terabit Speeds on Programmable Switches;

[31Lars-Christian Schulz, Robin Wehner, David Hausheer. 2023. Cryptographic Path Validation for SCION in P4. I
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Resource usage: Tofino 1& Tofino 2

Resource Type Tofino1 Tofino 2

Number of Stages 10712 | 18/20 » <= Pipe|ine Length

Action Data Bus Bytes 9,5% 9.5%

—> Moderate control flow logic
VLIW Instructions 8.1% 8.4%

Exact Match Input Xbar 8,6% 10,2%

Gateway 13% 15,6%
Hash Distribution Units 66.,7% 80%
Logical Table ID 354% | 4.3%
PHV Allocation <40% | =40% | —
SRAM 0,7% 0.4%
> Almost no memory used
TCAM 0% 0%

- 24 |



Integrating P4Chaskey With Other P4 Programs

In our public repository on github, we have provided an example of using
P4Chaskey as a control block into a generic P4 program.

* Small reflector program that verifies IPv6 addresses before forwarding.

We are currently integrating P4Chaskey into the desing of a SCION border
router in P4 that includes some of the EPICH! security extensions.

[11 Markus Legner, Tobias Klenze, Marc Wyss, Christoph Sprenger, Adrian Perrig. 2020. EPIC: Every Packet Is Checked in the Data Plane of a Path-Aware Internet. I
25



Conclusion

We presented P4Chaskey, the first data plane
implementation of a MAC algorithm for PISA that:
e Uses 128-bit security.

* |t executes in a single pipeline pass (Tofino 2) for
inputs up to 128-bits.

Our evaluation has shown that:

* |t requires fewer pipeline passes than state-of-the-
artimplementations.

* |ts resource usage allows for other data plane
functionality to be executed in parallel.

26
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