F‘he Past, Present and FutuTre
of P4

Deb Chatterjee

START

2014

The paper "Programming
"Programming Protocol
Protocol Independent
Packet Processors" is
published in ACM
Stgcormm

2015

2017

OCTOBER 3

A

P S
ORksHop 20

control prre component, 2019 2024

component, is
announced.

Intel acquires Barefoot P4 moves from ONF to

Around the same time, Linux Foundation
time, the evolved
language spec P4, is

published

P4 introduced its first
first version P4,

2018 2023

P4 joins ONF Intel stops development
of future generations of
Tofino

Cascade Glacier

) Cascade Glacier 8-lane PCle
Programmable vSwitch Offload FPGA Gen3 SR-IOV

* Customer vSwitches & Open vSwitch

* 128Gb Internal Switch Fabric vNIC | | vNIC
« Millions of flows @ 12.5 Mpps x2 = VIF ";
* Programmable encap/decap & NAT g % |

* Connection tracking & ACLs 35 . Programmable

* Pipeline generated from P4 g © | vSwitch Pipeline

Embedded CPU Cores

» vSwitch slow path & NIC management 25GbE

Ethernet

Virtio-net Hardware Offload i

* Supports Existing Linux & DPDK VMs
* Up to 40Gb/sec, 12.5 Mpps

* 128 VFs, Multiple queues/VF

 TSO, CSUM, transmit rate limiters

* Live migration between HW & SW

Arria-10 25GbE Board

* Production by Q2’18
Dual 25G SFP28

PCle gen3 x8

DDR4 Memory

<45W, passive heatsink

P4-DPDK

Step 1: Offline

The P4C compiler (i.e. p4c-dpdk) translates the input pipeline.p4
file into an intermediate representation pipeline.spec (plain text
file) or pipeline.so (binary file).

Step 2: Run-time

The external controller connects to the target agent to load the
P4 blob: in the baseline “interpreted” mode, this is the
pipeline.spec text file; in the optimized “compiled” mode, this is
the pipeline.so binary file.

The target agent creates the P4 objects for each pipeline based
on the P4 blob and maps each pipeline to a CPU core.

Each CPU core executes one or multiple pipelines by running
the associated instructions for each input packet. Each pipeline
Is single threaded.

The external controller performs table updates and reads the
statistics.

OCTOBER 3

(Gn)
pipeline. K
| spec Pt 1/
7 External
Controller
pipeline. H 4
SO 1 1
1 1
7 ! \

J

1 1
1 1
Setup | | Table Updates,
(Init time) : ! Stats Read
1 : (Runtime)
I i
1 1
1 1
v ¥

Pipeline | Pipeline | Pipeline

CPU CPU CPU
core core core

Server

CPU
core

IPDK, with P4 as the pillar for everything

1. Infrastructure-as-a-Service laas Paa Inline
Virtual Networking, Storage & Crypto = use m
- Cases Storage ML/AI
Across VMs, containers & bare metal @
2. Platform-as-a-Service IPDK Infrastructure Application Interface
i I Open %% K% Compiler
Container Networking (Kubernetes) — “0*" 3a8 | §ioqk - | & T

Sidecars (Envoy, MongoDB)

IPDK Target Abstraction Interface
3. Inline Acceleration O
o arge
Firewall, IDS, Network Telemetry Targets S
5G/Wireless Infrastructure, Al/ML

l

OVS HW offload challenges

OVS Megaflow cache - great
SW optimization idea, can be
slow, potential of DDOS
attack

The reactive behavior
requires high slow path
performance; maintaining
high flow set up rate is a
challenge

The aggregation followed by
disaggregation -> the intent is
lost

Better -> skip the caches and
offload directly to the HW
tables

Solves the other associated
problems

OCTOBER 3

N 7
b, 13
OrisHop 2%

Generic Flow Optimized Flow SDN
Offload Offload ~ “ontroller
SDN Controller
Application Pipeline DB ——— ——
pp(CIear inter?t for 2 » 12 - Application Pipeline DB
each table is known) ACL | kue| | weue ACL) | kue| | kup (Clear intent for
each table is known)
OVS SlowPath L | ! R
OpenFlow Tables T1/ T2/ 3/ OpenFlow Tables
(Intent for each T ™ 73 ACL 2 3 w/ P4 annotations
table is lost) LKUP| | LKUP (Intent is preserved)
\ / | | P4API
J
OVS SW Faskath \V /
Megaflow Cache
(Generic flows are
Offloaded)
HW Dat&llane Y { v {
Specialized HW Blocks Specialized HW Blocks
(Nonoptimal usage TCAM EM LPM TCAM EM LPM (Nonoptimal usage

of HW blocks

of HW blocks

P4-driven vSwitch platform

* As HW vendor, we need to support many
platforms

* Switch, NIC, FPGA, SW

* As HW vendor, we need to support many

vSwitches
* Custom vSwitches not upstreamed
* Windows GFT, Vmware NSX-T, VPP

and many others

SDN Controller / Agent

P4
Runtime

* P4-driven vSwitch platform

* |s common, extensible, and
programmable

* Any specific vSwitch can be supported
by simply adding a thin shim layer

_ OCTOBER 3
& T

New T ———————————

fxists

P4 Controller OF Controller

Control planes: * 3

* QVS - Maps OVS configuration to P4 Tables (E.g.
Vxlan)

* P4Runtime + Openconfig — Configures P4 tables
explicitly (E.g. Container load-balancing)

* Kernel — Maps Kernel configurations (via SAl) to P4
Tables (E.g. ECMP w/ FRR)

OPKSHOP 202

P4-driven vSwitch platfo

"ovs-vswitchd
= ofproto

* All three control planes can used to program the same —— p4proto—dp|f/APl ofproto-dpif

P4 target. : e
* Multiple P4Runtime clients can connect and program ;
4 P4-dpdk | P4-ubpf

p OF->P4 Tables/Fields/Actions

different P4 pipelines dpif-provider

Data Planes: ', userspace

...............

* Physical NICs (Tofino, Intel P4 NICs etc) ' kernel
. P4-ebpf/TC-P4
* P4-DPDK (userspace) ;

. PO

* P4-ebpf (kernel) e T TANEEEE
i P4NICs m

‘---—

A ———

P4-programmable IPSec

Host-Net Ipsec Offload with P4 Met-Host
Host 1 Host 2

« Both Tunnel and Transport mode IPSec traffic,
along with non-IPSec traffic, can be offloaded

simultaneously on the same NIC. wi | o] wi [e |
« All traffic passes through the inline crypto
processor, and the P4 match-action tables = S I
while passing the rest as clear traffic. :
P4 was very useful in supporting features such : :
as custom VXLAN tags : T o I

determine which traffic to encrypt or decrypt,

Green Line: Tx to Rx Clear Data Traffic

OCTOBER 5

P4-enabled K8s offload &

M
#Orkspop 29

———— O E——— " . . . IS DS DI GBI I GG S DS GESS S DS DS S See— S— _——-— = === =

I- Worker Node

‘

— — — — — — — — — — — Management,

IPU Control Worker Node I
| Kubelet 8] BGP Agent I I I
| - - _ |
| Calico CNI /'/ ' | | |
| Y " R;mtime I I |
| N I t i | | |
L | |
| | || |
| | |
| |
|

. el k85 Offload Comps
I Comms channels
I Calico Components

I K8S Kubelet
Tunnel to Remote Pod

@®

Internet
Gateway

P4-TC: P4 support in Linux Kernel

e Datapath definition using P4 Ruhtjme

C I
o Generate the datapath for both s/w and vendor h/w
m Functional equivalence between sw and hw
Input=XxX TC-P4

. . . | output=Y
e P4 Linux kernel-native implementation | P4 software >

o Kernel TC-based software datapath and Kernel-based HW datapath offload S

m Understood Infra tooling which already has deployments ’ |
o Seamless software and hardware symbiosis —3 f;:_;1
o Functional equivalence whether offloading or s/w datapaths L_‘*’“_ t &

m Bare Metal, VMSs, or Containers
o ldeal for datapath specification
m testin s/w container, VM, etc) then offload when hardware is available

Input=x

|

| output=Y :>

OCTOBER 3

P S
OrksHop 297

2017 2021 2022 2024

Cascade Glacier - FPGA- P4-programmable P4-programmable IPSec P4 support in Linux
FPGA-based, P4- programmable on Intel ES 2100 IPU kernel (P4-TC)
compatible OVS offload vSwitch

offload card

START

2021 2022 2023

Intel ES 2100 IPU with Infrastructure P4-based K8s offload on
with full P4 support Programmers' Intel ES 2100 IPU
Development Kit (IPDK),
fully P4-based

Our experience with P4

The learning curve of P4 is possibly a myth!

More than the expressibility of P4, it's quite often the underlying limitations of the
HW that becomes the limiting factor

P4 leaves a lot of details to be figured out and changed at the compiler level,
which is not a bad thing

The language can benefit from having additional objects recognized, such as
gueues

Perfect portability, defined as “taking P4 written for device A, and running it
unmodified on device B” may be an elusive target

New use cases, such as being able to support machine learning, is worth
exploring. Some of these newer use cases will require support for not just
abstraction of packets, but also abstraction of flows and beyond

New P4 possibilities are endless. We should keep maintaining the momentum on
PA4!

oooooooo

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: P4-programmable IPSec
	Slide 10
	Slide 11: P4-TC: P4 support in Linux Kernel
	Slide 12
	Slide 13: Our experience with P4
	Slide 14

