
The Past, Present and Future 
of P4

Deb Chatterjee



START

2014
The paper "Programming 
"Programming Protocol 
Protocol Independent 
Packet Processors" is 
published in ACM 
Sigcomm

2015
P4 introduced its first 
first version P4

14

2017
P4RunTime, the control 
control plane component, 
component, is 
announced.
Around the same time, 
time, the evolved 
language spec P4

16
 is 

published

2018
P4 joins ONF

2019
Intel acquires Barefoot

2024
P4 moves from ONF to 
Linux Foundation

2023
Intel stops development 
of future generations of 
Tofino





Server

Pipeline

CPU

core

Setup

(Init time)

External 

Controller

Table Updates, 

Stats Read
(Runtime)

Pipeline

CPU

core

Pipeline

CPU

core

Target 

agent

CPU

core

Intel NICsIntel NICsNICs
Intel NICsIntel NICsNICs

P4-DPDK 

Step 2: Run-time

• The external controller connects to the target agent to load the 
P4 blob: in the baseline “interpreted” mode, this is the 
pipeline.spec text file; in the optimized “compiled” mode, this is 

the pipeline.so binary file.

• The target agent creates the P4 objects for each pipeline based 
on the P4 blob and maps each pipeline to a CPU core.

• Each CPU core executes one or multiple pipelines by running 

the associated instructions for each input packet. Each pipeline 
is single threaded.

• The external controller performs table updates and reads the 

statistics.

pipeline.

spec

pipeline.

so
Step 1: Offline

• The P4C compiler (i.e. p4c-dpdk) translates the input pipeline.p4 
file into an intermediate representation pipeline.spec (plain text 
file) or pipeline.so (binary file).

P4C 

Compiler











P4-programmable IPSec 
• Both Tunnel and Transport mode IPSec traffic, 

along with non-IPSec traffic, can be offloaded 

simultaneously on the same NIC.

• All traffic passes through the inline crypto 

processor, and the P4 match-action tables 

determine which traffic to encrypt or decrypt, 

while passing the rest as clear traffic.

• P4 was very useful in supporting features such 

as custom VXLAN tags



P4-enabled K8s offload 

Worker Node IPU Control

Driver

POD 1

POD 2

Management

P1 - Gateway

Host Netdev

UplinkP0

Kubelet 

IPU AGENT
 (External p4 Dataplane)

Worker Node

P0

IPU MANAGERARP Proxy/
Exception

Tunnel to Remote Pod

Felix

P4 Control Plane
Stack

Management 

PF

Device Plugin
 (SR-IOV, S-IOV, SF)

Internet 
Gateway

Calico CNI

BGP Agent

P4 Runtime

Management 

P4 Dataplane

PF PCIe IFPF PCIe IF

Driver (VFIO)

Intel K8s Offload Comps

Comms channels

 Calico Components

K8S Kubelet

Netdev / 
Driver



P4-TC: P4 support in Linux Kernel

● Datapath definition using P4
○ Generate the datapath for both s/w and vendor h/w

■ Functional equivalence between sw and hw

● P4 Linux kernel-native implementation
○ Kernel TC-based software datapath and Kernel-based HW datapath offload

■ Understood Infra tooling which already has deployments

○ Seamless software and hardware symbiosis

○ Functional equivalence whether offloading or s/w datapaths

■ Bare Metal, VMs, or Containers

○ Ideal for datapath specification

■ test in s/w container, VM, etc) then offload when hardware is available



START

2017
Cascade Glacier - 
FPGA

FPGA
-

-
based, P4-

compatible OVS offload 
offload card

2021
Intel ES 2100 IPU with 
with full P4 support

2021
P4-
programmable 

programmable 

vSwitch

2022
Infrastructure 
Programmers' 
Development Kit (IPDK), 
fully P4-based

2022
P4-programmable IPSec 
on Intel ES 2100 IPU

2024
P4 support in Linux 
kernel (P4-TC)

2023
P4-based K8s offload on 
Intel ES 2100 IPU



Our experience with P4 
▪ The learning curve of P4 is possibly a myth!

▪ More than the expressibility of P4, it’s quite often the underlying limitations of the 

HW that becomes the limiting factor

▪ P4 leaves a lot of details to be figured out and changed at the compiler level, 

which is not a bad thing

▪ The language can benefit from having additional objects recognized, such as 

queues

▪ Perfect portability, defined as “taking P4 written for device A, and running it 

unmodified on device B” may be an elusive target

▪ New use cases, such as being able to support machine learning, is worth 

exploring. Some of these newer use cases will require support for not just 

abstraction of packets, but also abstraction of flows and beyond

▪ New P4 possibilities are endless. We should keep maintaining the momentum on 

P4!




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: P4-programmable IPSec 
	Slide 10
	Slide 11: P4-TC: P4 support in Linux Kernel
	Slide 12
	Slide 13: Our experience with P4 
	Slide 14

