
Scaling P4-Based Automated Reasoning
(Performance and Coverage)

P4 Workshop, Oct. 3, 2024

Ali Kheradmand (Google), Meghana Sistla (UT Austin*)

* Work done while at Google

P4-BAR

1

2

2021 2022 2023 2024 …

P4-Symbolic

Parallelization

Time
bound

Merge
points

Caching
Coverage

goalsPacket
Synthesizer

service
Generic
parser

Entry
generation

Path
coverage

Guard
factorization

P4 network
verification

(future)

DVaaS TrafficGen
Dataplane
validation

6+ orders of magnitude performance improvement

Incremental
Solver

Ouroboros

Highlights of Our Journey Developing P4-Symbolic

Overall goal: Ensure network works as intended

4

SDN Controller

Intents

Subgoal 1: Ensure controller produces correct table

entries (according to intents)

Subgoal 2: Ensure switch works as expected

(according to table entries)

Config/Apps

Table entries

Our way: Automatically derive tests

from a formal specification of how the

switch should work

● Comprehensive coverage

● Effortless evolution

5

Focus: Ensure switch stack works as expected

Controller

Switch Linux

ASIC CPU

Hardware
Abstraction Layer (SDK)

Vendor Abstraction Layer (SAI)

SyncD

Orchestration Agent

P
IN

S
Sw

it
ch

 S
o

ft
w

ar
e

St
ac

k

P4Runtime Server

A
SI

C
D

ri
ve

rs

Sw
itch

 ru
n

n
in

g P
IN

S

Need:
1. Specification language
2. Test generation tools

Traditional: manually write tests
● Exponentially large space to cover

○ Labor intensive
● Hard to evolve

P4-Based Automated Reasoning (P4-BAR)

300+ (unique) bugs found so far

(and many more bugs prevented)

SwitchV: Automated SDN Switch

Validation with P4 Models

(SIGCOMM’22)
Kinan Dak Alb ab, Jonathan Dilorenzo, Stefan H eule, Ali Kheradmand ,

Steffen Smolka, Konstantin Weitz, Muhamm ad Tirmazi, Jiaqi Gao, Minlan Yu

Automatically
generated tests

P4-Symbolic
P4-Fuzzer
…

■ Reported
■ Resolved

Dataplane Validation

Production
entries

Switch

Expected
Output

Actual
Output

Verify
Match

Packets

P4Runtime

P4 Simulator
(BMv2)

P4Runtime

Coverage goal
E.g. “(Set of packets) hitting all table entries in the snapshot”

7

P4-Symbolic

Input x

x > 0 ?

y < 10 ?

y = x * 2

do_B()

do_A()

do_C()

8

Symbolic Execution

“Give me the input that triggers “do_B().”

Cover: do_B()

Symbolic input x

x > 0 ?

y < 10 ?

y = x * 2

do_B()

do_A()

do_C()

x > 0 ¬ (x > 0)

y = x * 2

y < 10 ¬ (y < 10)

“Give me the input that triggers “do_B().”

9

Cover: do_B()

Symbolic Execution

⇒ Solve(“do_B() is reached”)

⇒ Solve((x > 0) ∧ (y = x * 2) ∧ (y < 10))

⇒ A solution: {x = 1, y = 2}

(with Z3 solver)

Symbolic Execution in P4

Entry 1
Entry 2
Entry 3

…

10

Input packet

Entry 1
Entry 2
Entry 3

…

if …

Entry 1
Entry 2
Entry 3

…

T
a

b
le

 1

T
a

b
le

 2

T
a

b
le

 3

if (entry 1 match) action 1
else if (entry 2 match) action 2
else if (entry 3 match) action 3
else …

sym_packet

P4-Symbolic

11

SMT encoding of packet
processing execution

e.g.

Request 1: packet must hit
12th entry in table acl_ingress

Request 2: …

…

Synthesis
Request
Synthesis
Request

Synthesis
requests

Coverage
Goals

Criteria
Generato

r

e.g.

“Hitting all table entries”

Input

Output

System

Artifact

External
P4

Program

Table
Entries

Symbolic
Evaluator

Symbolic
Trace

Init

(once)

Z3

e.g.

Result 1: packet = …

Result 2: unsatisfiable

…

Synthesis
Request
Synthesis
Request

Synthesis
Results

Synthesize Packet

(multiple times)

Replay prod
snapshot+DVaaS

vanilla DVaaS

Dataplane Validation Library (DVaaS)

PacketSynthesizerService

P4-Symbolic

Legacy tests
Externally shared

tests vectors
Random

entries+DVaaS

TrafficGen

NSF
upgrade+TrafficGenuser tests

Product 1 Product 2 Product 3 Product 4 Product 5 Product 6

P4-Symbolic in use

12

Daily testing workflows

Replay prod
snapshot+DVaaS

vanilla DVaaS

Dataplane Validation Library (DVaaS)

PacketSynthesizerService

P4-Symbolic

Legacy tests
Externally shared

tests vectors
Random

entries+DVaaS

TrafficGen

NSF
upgrade+TrafficGenuser tests

Product 1 Product 2 Product 3 Product 4 Product 5 Product 6

Problem

13
NP-hard problem => computationally expensive => bottleneck

Daily testing workflows

● Background and Context

● P4-Symbolic

● Performance Improvements

● Coverage Improvements

● Future

Outline

14

Undesirable “Solution”

Reduce coverage

- Smaller coverage goals

- E.g. Ignore expensive tables, entries

- Time bound coverage:

- Stop execution after a certain “time limit” (even if coverage goal not achieved)

15
2021 2022 2023 2024 …

P4-Symbolic

Parallelization

Time
bound

Merge
points

Caching
Coverage

goalsPacket
Synthesizer

service
Generic
parser

Entry
generation

Path
coverage

Guard
factorization

P4 network
verification

(future)

DVaaS TrafficGen

Dataplane
validation

Incremental
Solver

Ouroboros

Undesirable, but at times necessary as a last resort

with limited
coverage

16

1. Offline packet synthesis (caching)

No need to regenerate packets unless inputs (P4 model, entries, goals) change

Do not allow code merge until cache is populated

16
2021 2022 2023 2024 …

P4-Symbolic

Parallelization

Time
bound

Merge
points

Caching
Coverage

goalsPacket
Synthesizer

service
Generic
parser

Entry
generation

Path
coverage

Guard
factorization

P4 network
verification

(future)

DVaaS TrafficGen

Dataplane
validation

Incremental
Solver

Ouroboros

17

Caveats

● Time to populate cache

● Frequent P4 model updates

○ Headache with concurrent development

● Ineffective in tests that frequently update entries,

17

>17h

2021 2022 2023 2024 …

P4-Symbolic

Parallelization

Time
bound

Merge
points

Caching
Coverage

goalsPacket
Synthesizer

service
Generic
parser

Entry
generation

DVaaS

Dataplane
validation

Incremental
Solver

Ouroboros

Guard
factorization

TrafficGen
P4 network
verification

(future)

Path
coverage

1. Offline packet synthesis (caching)

1818
2021 2022 2023 2024 …

P4-Symbolic

Parallelization

Time
bound

Merge
points

Caching
Coverage

goalsPacket
Synthesizer

service
Generic
parser

Entry
generation

Path
coverage

Guard
factorization

P4 network
verification

(future)

DVaaS TrafficGen

Dataplane
validation

Incremental
Solver

Ouroboros

2. Parallelization

19

Synthesis
Request
Synthesis
Requestz

Synthesis
requests

Coverage
Goals

Criteria
Generato

r

Input

Output

System

Artifact

External

P4
Program

Table
Entries

Symbolic
Evaluator

Symbolic
Trace

Init

(once)

Z3
Synthesis
Request
Synthesis
Request

Synthesis
Results

Synthesize Packet

(multiple times)

Independent of each other

embarrassingly parallelizable

=
>

2. Parallelization

20

Synthesis
Request
Synthesis
Requestz

Synthesis
requests

Coverage
Goals

Criteria
Generato

r

Input

Output

System

Artifact

External

P4
Program

Table
Entries

Symbolic
Evaluator

Symbolic
Trace

Init

(once)

Z3
Synthesis
Request
Synthesis
Request

Synthesis
Results

Synthesize Packet

(multiple times)

Independent of each other

embarrassingly parallelizable

=
>

2. Parallelization

21

Packet
Synthesizer

RPC
Service

Synthesis
Request
Synthesis
Requestz

Synthesis
requests

Coverage
Goals

Criteria
Generato

r

Input

Output

System

Artifact

External

P4
Program

Table
Entries

Independent of each other

embarrassingly parallelizable

=
>

2. Parallelization

Init

Sy
n

th
es

iz
e

 P
ac

ke
t

Synthesis
Request
Synthesis
Request

Synthesis
Results

22

Synthesis
Request
Synthesis
Requestz

Synthesis
requests

Coverage
Goals

Criteria
Generato

r

Input

Output

System

Artifact

External

P4
Program

Table
Entries

Synthesis
Request
Synthesis
Request

Synthesis
Results

Packet
Synthesizer

Client

Packet
Synthesizer

Servers

Task
Scheduler

2. Parallelization

2323
2021 2022 2023 2024 …

P4-Symbolic

Parallelization

Time
bound

Merge
points

Caching
Coverage

goalsPacket
Synthesizer

service
Generic
parser

Entry
generation

Path
coverage

Guard
factorization

P4 network
verification

(future)

DVaaS TrafficGen

Dataplane
validation

Incremental
Solver

Ouroboros

3. Symbolic Execution Merge Points

24

Synthesis
Request
Synthesis
Requestz

Synthesis
requests

Coverage
Goals

Criteria
Generato

r

Input

Output

System

Artifact

External

P4
Program

Table
Entries

Symbolic
Evaluator

Symbolic
Trace

Init

(once)

Z3
Synthesis
Request
Synthesis
Request

Synthesis
Results

Synthesize Packet

(multiple times)

3. Symbolic Execution Merge Points

SMT encoding of packet
processing execution

25

3. Symbolic Execution Merge Points

State

g

Guard Guarded Map

Field Expr.

f₁ v₁

f₂ v₂

Match Action

e₁ a₁

e₂ a₂

e₃ a₃

Match Action

e₁ a₁

e₂ a₂

e₃ a₃

Match Action

e₁ a₁

e₂ a₂

e₃ a₃

T1 T2

T3

Cond

26

3. Symbolic Execution Merge Points

State

g

Guard Guarded Map

Field Expr.

f₁ v₁

f₂ v₂

Guard: conditions that allow execution
to reach the current point

When is it updated: (1) Conditionals, (2)
Table entry match condition

Match Action

e₁ a₁

e₂ a₂

e₃ a₃

Match Action

e₁ a₁

e₂ a₂

e₃ a₃

Match Action

e₁ a₁

e₂ a₂

e₃ a₃

T1 T2

T3

Cond

27

3. Symbolic Execution Merge Points

State

g

Guard Guarded Map

Field Expr.

f₁ v₁

f₂ v₂

Guarded Map: fields in header + metadata ->
SMT expression (value of the field at the
current execution point)

When is it updated: Table entry action

Match Action

e₁ a₁

e₂ a₂

e₃ a₃

Match Action

e₁ a₁

e₂ a₂

e₃ a₃

Match Action

e₁ a₁

e₂ a₂

e₃ a₃

T1 T2

T3

Cond

With Merge
Points

No Merge
Points

c

T1 T2

T3

c

T1 T2

T3

28

3. Symbolic Execution Merge Points

With Merge
Points

No Merge
Points

c

T1 T2

T3

c

T1 T2

T3

29

3. Symbolic Execution Merge Points

With Merge
Points

No Merge
Points

c

T1 T2

T3

c

T1 T2

T3

30

3. Symbolic Execution Merge Points

With Merge
Points

No Merge
Points

c

T1 T2

T3

c

T1 T2

T3

31

3. Symbolic Execution Merge Points

With Merge
Points

No Merge
Points

c

T1 T2

T3

c

T1 T2

T3

32

3. Symbolic Execution Merge Points

No Merge
Points

c

T1 T2

T3

c

T1 T2

T3

33

With Merge
Points

Visited twice!
Larger expressions in state!

3. Symbolic Execution Merge Points

No Merge
Points

c

T1 T2

T3

c

T1 T2

T3

34

With Merge
Points

3. Symbolic Execution Merge Points

No Merge
Points

c

T1 T2

T3

c

T1 T2

T3

35

With Merge
Points

3. Symbolic Execution Merge Points

No Merge
Points

c

T1 T2

T3

c

T1 T2

T3

36

With Merge
Points

3. Symbolic Execution Merge Points

No Merge
Points

c

T1 T2

T3

c

T1 T2

T3

37

With Merge
Points

Merge Point

3. Symbolic Execution Merge Points

No Merge
Points

c

T1 T2

T3

c

T1 T2

T3

38

With Merge
Points

Visited only 1 time!
Smaller expressions!

3. Symbolic Execution Merge Points

Product 1 Product 2

Clos stage 2 Clos stage 3 Clos stage 2 Clos stage 3

Packet synthesis
requests
≈
{entries}x{packet fate}

~1000 ~1000 ~1500 ~3500

Runtime
(before improvements)

~10 mins ~10 mins ~40 mins ~7 hours ↑
(17 hours at
some point)

Runtime
(with improvements)
parallelization, merge points

<5s <5s <30s ~1m

Results so far

39

4040

>17h

2021 2022 2023 2024 …

P4-Symbolic

Parallelization

Time
bound

Merge
points

Caching
Coverage

goalsPacket
Synthesizer

service
Generic
parser

Entry
generation

DVaaS

Dataplane
validation

Incremental
Solver

Ouroboros

Guard
factorization

TrafficGen
P4 network
verification

(future)

Path
coverage

Did we solve the problem?

< 1m >4h

YES!

but only temporarily! :(

New products and use cases
● More complex pipelines
● Significantly larger (5x) snapshots

More compute (servers) did not help

Last resorts
● Reduced coverage
● Re-enabled time-bound synthesis
● Relied on offline synthesis

4141

>17h

2021 2022 2023 2024 …

P4-Symbolic

Parallelization

Time
bound

Merge
points

Caching
Coverage

goalsPacket
Synthesizer

service
Generic
parser

Entry
generation

DVaaS

Dataplane
validation

Incremental
Solver

Ouroboros

Guard
factorization

TrafficGen
P4 network
verification

(future)

Path
coverage

< 1m >4h

4. Guard Factorization

42

4. Guard Factorization

Match Action

in_port = 1 out_port = 1

in_port = 2 out_port = 2

in_port = 3 out_port = 3

Current Symbolic Execution Flow

State - S0 State - S1

true

Guard Guarded Map

Field Expr.

in_port u

out_port w

true
∧

u = 1

Guard Guarded Map

Field Expr.

in_port u

out_port
ITE(true ∧

u = 1, 1, w)

ITE = IF-THEN-ELSE

IF (true ∧ u == 1)
out_port = 1

ELSE
out_port = w

Match Action

in_port = 1 out_port = 1

in_port = 2 out_port = 2

in_port = 3 out_port = 3

43

4. Guard Factorization

Current Symbolic Execution Flow

State - S1 State - S2

true
∧

u != 1

∧
u = 2

Guard

Guarded Map

Field Expr.

in_port u

out_port

ITE(true ∧
u != 1 ∧ u = 2,
2, ITE(true ∧

u = 1, 1, w))

Match Action

in_port = 1 out_port = 1

in_port = 2 out_port = 2

in_port = 3 out_port = 3

44

4. Guard Factorization

Current Symbolic Execution Flow

State - S2 State - S3

true
∧

u != 1
∧

u != 2
∧

u = 3

Guard

Guarded Map

Field Expr.

in_port u

out_port

ITE(true ∧
u != 1 ∧ u != 2 ∧ u
= 3, 3, ITE(true ∧
u != 1 ∧ u = 2, 2,

ITE(true ∧
u = 1, 1, w))

Match Action

in_port = 1 out_port = 1

in_port = 2 out_port = 2

in_port = 3 out_port = 3

45

4. Guard Factorization

Optimized Symbolic Execution Flow

Global State

Local State - L1

true

Guard Guarded Map

Field Expr.

in_port u

out_port 1

Match Action

in_port = 1 out_port = 1

in_port = 2 out_port = 2

in_port = 3 out_port = 3

46

4. Guard Factorization

Optimized Symbolic Execution Flow

Global State

Local State - L2

true

Guard Guarded Map

Field Expr.

in_port u

out_port 2

Match Action

in_port = 1 out_port = 1

in_port = 2 out_port = 2

in_port = 3 out_port = 3

47

4. Guard Factorization

Optimized Symbolic Execution Flow

Global State

Local State - L3

true

Guard Guarded Map

Field Expr.

in_port u

out_port 3

Match Action

in_port = 1 out_port = 1

in_port = 2 out_port = 2

in_port = 3 out_port = 3

48

4. Guard Factorization

Optimized Symbolic Execution Flow

Global State

Local State - L3

Local State - L2

Local State - L1

New Global State

true

Guard

Guarded Map

Field Expr.

in_port u

out_port

ITE(true,
ITE(u = 1, 1, ITE(u
= 2, 2, ITE(u = 3,

3, w))), w)

49

4. Guard Factorization

Optimized Symbolic Execution Flow

true

Guard

Guarded Map

Field Expr.

in_port u

out_port

ITE(true,
ITE(u = 1, 1, ITE(u
= 2, 2, ITE(u = 3,

3, w))), w)

true
∧

u != 1

∧
u != 2
∧

u = 3

Guard

Guarded Map

Field Expr.

in_port u

out_port

ITE(true ∧
u != 1 ∧ u != 2 ∧ u

= 3, 3,

ITE(true ∧
u != 1 ∧ u = 2, 2,

ITE(true ∧
u = 1, 1, w))

Match expression of row i repeated i-1 times Match expression of every row appears once

Complexity: O(n^2) Complexity: O(n)

Smaller expressions

Faster SMT solving time

Helps testing of the switch better:

- Test with larger snapshots

- Expand coverage goals: Re-enable more coverage goals (e.g. header coverage)

Results

50

800x speedup!
(2.2hrs -> ~20sec)

Increased developer velocity

5151

>17h

2021 2022 2023 2024 …

P4-Symbolic

Parallelization

Time
bound

Merge
points

Caching
Coverage

goalsPacket
Synthesizer

service
Generic
parser

Entry
generation

DVaaS

Dataplane
validation

Incremental
Solver

Ouroboros

Guard
factorization

TrafficGen
P4 network
verification

(future)

Path
coverage

Current status

< 1m >7h < 1m

> 1000x speedup New use cases > 500x speedup

> 6 orders of magnitude speedup

● Background and Context

● P4-Symbolic

● Performance Improvements

● Coverage Improvements

● Future

Outline

5252
2021 2022 2023 2024 …

P4-Symbolic

Parallelization

Time
bound

Merge
points

Caching
Coverage

goalsPacket
Synthesizer

service
Generic
parser

Entry
generation

Path
coverage

Guard
factorization

P4 network
verification

(future)

DVaaS TrafficGen

Dataplane
validation

Incremental
Solver

Ouroboros

Coverage caveat

53

P4-Symbolic

IPv4 Packet

ACL Table

Coverage Goal:
“hitting all table entries”

54

Coverage Goal:
“hitting all table entries”

P4-Symbolic

IPv4 Packet

ACL Table

ACL Table

IPv6 Packet

Production
Scenario

Failure

Could miss the bug!

Coverage caveat

Nearly missed bug
Good packet: “IPv4 packet hitting ACL table”

Bad packet: “IPv6 packet hitting ACL table”

55

Solution 1: Manually expand coverage goals!

Add entry coverage, header coverage, ….. , and so on

- Cannot cover every case

- Very complex coverage goals -> more requests -> more time to solve -> slower packet synthesis

Solution 2: Path Coverage! (Ultimate coverage)

for e in entries:
generate a packet hitting e

for e in entries:
for h in headers:

generate a
packet containing . header h
and hitting e

Coverage

Path Coverage

56

e₁ a₁

e₂ a₂

e₃ a₃

TABLE 1

e₁ a₁

e₂ a₂

e₃ a₃

TABLE 2

Path Coverage

57

e₁ a₁

e₂ a₂

e₃ a₃

TABLE 1

e₁ a₁

e₂ a₂

e₃ a₃

TABLE 2

TOTAL PATHS COVERED: 9

Every possible scenario of a packet flow tested!

Path Coverage

58

e₁ a₁

e₂ a₂

e₃ a₃

TABLE 1

e₁ a₁

e₂ a₂

e₃ a₃

TABLE 2

Path Coverage

PROBLEM: PATH EXPLOSION!

Is there hope? - Yes

- Observation: Not all paths are valid

- Prune paths as you go!

59

Table 1: 1000 entries

Table 2: 1000 entries

Table 3: 1000 entries

Total Paths: 10^9 = 1B

Covering all paths is exponential!

Path Pruning

60

Match
Action

egress_port

e₁ 5

e₂ 50

e₃ 10

TABLE 1 TABLE 2

Match
egress_port

Action

5 a₁

10 a₂

15 a₃

Path Pruning

61

Match
Action

egress_port

e₁ 5

e₂ 50

e₃ 10

TABLE 1 TABLE 2

Match
egress_port

Action

5 a₁

10 a₂

15 a₃

Valid Path

*Valid Path -> An actual packet would take this path

Path Pruning

62

Match
Action

egress_port

e₁ 5

e₂ 50

e₃ 10

TABLE 1 TABLE 2

Match
egress_port

Action

5 a₁

10 a₂

15 a₃

𐄂 Invalid Path

*Invalid Path -> An actual packet would not take this path

TOTAL PATHS: 9

VALID PATHS: 2

Initial Results

63

Switch: Product 1 Clos Stage 2

#Paths: > 10^14

#Valid Paths: ~2M (~10^6)

Time taken: 8hrs

Initial Results

64

Switch: Product 1 Clos Stage 2

#Paths: > 10^14

#Valid Paths: ~2M (~10^6)

Time taken: 8hrs

1 representative packet per valid path
#Packets Synthesized = ~2M

Can we do better?

65

Observation: Lesser calls to solver => faster execution times.
- Only 12.9% of calls to solver are satisfiable

Can we make fewer calls to solver somehow?

We plan to explore ideas from literature that address this problem

● Background and Context

● P4-Symbolic

● Performance Improvements

● Coverage Improvements

● Future

Outline

6666
2021 2022 2023 2024 …

P4-Symbolic

Parallelization

Time
bound

Merge
points

Caching
Coverage

goalsPacket
Synthesizer

service
Generic
parser

Entry
generation

Path
coverage

Guard
factorization

P4 network
verification

(future)

DVaaS TrafficGen

Dataplane
validation

Incremental
Solver

Ouroboros

Overall goal: Ensure network works as intended

67

SDN Controller

Intents

Subgoal 1: Ensure controller produces correct table

entries (according to intents)

Subgoal 2: Ensure switch works as expected

(according to table entries)

Config/Apps

Table entries

Network Verification

68

SDN Controller

Intents

Config/Apps

Table entries

Existing system
● Hardcoded, incomplete model of switch

○ No guarantees on fidelity
○ Hard to evolve

In essence: symbolic execution at network level

Idea
● Extend P4 based symbolic execution to network

level
○ Guaranteed high fidelity

■ Due to dataplane validation
○ Effortless evolution

?

Thank you.

69

70

2021 2022 2023 2024 …

P4-Symbolic

Parallelization

Time
bound

Merge
points

Caching
Coverage

goalsPacket
Synthesizer

Service
Generic
parser

Entry
generation

Path
coverage

Guard
factorization

Network
verification

(future)

DVaaS TrafficGen

Milestones and

Dataplane
Validation

6+ orders of magnitude performance improvement

Incremental
Solver

Ouroboros

highlights

71

Relevant work

● HSA (NSDI’12), APV (ICNP’13), ddNF (HVC’16), #PEC (ICNP’19), etc.

○ Domain optimized “solvers” for network verification

○ Better performance, but more limitations (e.g. in packet rewrites)

● P4-Symbolic

○ Generic SMT solver (Z3)

○ More flexibility

○ Less performant

■ Good enough (for now)

■ Can employ ideas from above if needed

https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://www.cs.utexas.edu/~lam/NRL/Atomic_Predicates_Verifiers.html
https://people.eecs.berkeley.edu/~sseshia/pubdir/hvc16-ddnf.pdf
https://arxiv.org/abs/1908.09068

	Slide 1: Scaling P4-Based Automated Reasoning (Performance and Coverage)
	Slide 2: of Our Journey Developing P4-Symbolic
	Slide 4: Overall goal: Ensure network works as intended
	Slide 5: Focus: Ensure switch stack works as expected
	Slide 6: P4-Based Automated Reasoning (P4-BAR)
	Slide 7: Dataplane Validation
	Slide 8: Symbolic Execution
	Slide 9: Symbolic Execution
	Slide 10: Symbolic Execution in P4
	Slide 11: P4-Symbolic
	Slide 12: P4-Symbolic in use
	Slide 13: Problem
	Slide 14: Outline
	Slide 15: Undesirable “Solution”
	Slide 16: 1. Offline packet synthesis (caching)
	Slide 17: 1. Offline packet synthesis (caching)
	Slide 18: 2. Parallelization
	Slide 19: 2. Parallelization
	Slide 20: 2. Parallelization
	Slide 21: 2. Parallelization
	Slide 22: 2. Parallelization
	Slide 23: 3. Symbolic Execution Merge Points
	Slide 24: 3. Symbolic Execution Merge Points
	Slide 25: 3. Symbolic Execution Merge Points
	Slide 26: 3. Symbolic Execution Merge Points
	Slide 27: 3. Symbolic Execution Merge Points
	Slide 28: 3. Symbolic Execution Merge Points
	Slide 29: 3. Symbolic Execution Merge Points
	Slide 30: 3. Symbolic Execution Merge Points
	Slide 31: 3. Symbolic Execution Merge Points
	Slide 32: 3. Symbolic Execution Merge Points
	Slide 33: 3. Symbolic Execution Merge Points
	Slide 34: 3. Symbolic Execution Merge Points
	Slide 35: 3. Symbolic Execution Merge Points
	Slide 36: 3. Symbolic Execution Merge Points
	Slide 37: 3. Symbolic Execution Merge Points
	Slide 38: 3. Symbolic Execution Merge Points
	Slide 39: Results so far
	Slide 40: Did we solve the problem?
	Slide 41: 4. Guard Factorization
	Slide 42: 4. Guard Factorization
	Slide 43: 4. Guard Factorization
	Slide 44: 4. Guard Factorization
	Slide 45: 4. Guard Factorization
	Slide 46: 4. Guard Factorization
	Slide 47: 4. Guard Factorization
	Slide 48: 4. Guard Factorization
	Slide 49: 4. Guard Factorization
	Slide 50: Results
	Slide 51: Current status
	Slide 52: Outline
	Slide 53: Coverage caveat
	Slide 54: Coverage caveat
	Slide 55: Coverage
	Slide 56: Path Coverage
	Slide 57: Path Coverage
	Slide 58: Path Coverage
	Slide 59: Path Coverage
	Slide 60: Path Pruning
	Slide 61: Path Pruning
	Slide 62: Path Pruning
	Slide 63: Initial Results
	Slide 64: Initial Results
	Slide 65: Can we do better?
	Slide 66: Outline
	Slide 67: Overall goal: Ensure network works as intended
	Slide 68: Network Verification
	Slide 69
	Slide 70: Milestones and
	Slide 71: Relevant work

