
Proprietary + Confidential

P4 Workshop 2024 - Sunnyvale

Steffen Smolka, Jonathan DiLorenzo, Ali Kheradmand

P4-Based Automated Reasoning (P4-BAR)
for the (Networking) Masses!

P4-BAR

Proprietary + Confidential

P4 as intended P4 at Google

switch.p4

programmable
network ASIC

switch.p4

fixed-function*
network ASIC

programs abides by

* Oversimplified for ease of exposition.
All our ASICs are programmable to varying degrees, but few are fully P4-programmable.

Google's Surprising Use of P4

Proprietary + ConfidentialGoogle's View: P4 as a Specification Language

We view P4 programs as machine-readable
specifications capturing all requirements for a
switch
in a specific deployment role:

Top of
Rack

Middle
Block

Fabric
Border ...

Proprietary + ConfidentialGoogle's View: P4 as a Specification Language

We view P4 programs as machine-readable
specifications capturing all requirements for a
switch
in a specific deployment role:

Top of
Rack

Middle
Block

Fabric
Border ...

middleblock.p4

table ipv4_route_table {

key = {

ipv4_dst : lpm;

}

action = {

forward;

drop;

}

}

action forward (port_t port) {

egress_port = port;

}

Proprietary + ConfidentialGoogle's View: P4 as a Specification Language

We view P4 programs as machine-readable
specifications capturing all requirements for a
switch
in a specific deployment role:

Top of
Rack

Middle
Block

Fabric
Border ...

middleblock.p4

table ipv4_route_table {

key = {

ipv4_dst : lpm;

}

action = {

forward;

drop;

}

}

action forward (port_t port) {

egress_port = port;

}

table entry

ipv4_dst: 10.0.0.0/8

forward:

port: 42Schema of switch API

Proprietary + ConfidentialGoogle's View: P4 as a Specification Language

We view P4 programs as machine-readable
specifications capturing all requirements for a
switch
in a specific deployment role:

Top of
Rack

Middle
Block

Fabric
Border ...

middleblock.p4

table ipv4_route_table {

key = {

ipv4_dst : lpm;

}

action = {

forward;

drop;

}

}

action forward (port_t port) {

egress_port = port;

}

table entry

ipv4_dst: 10.0.0.0/8

forward:

port: 42Schema of switch API

Dataplane behavior
ipv4_dst:

10.0.2.1
ipv4_dst:

10.0.2.1

port 3 port 42

Proprietary + ConfidentialThe Beauty And The Beast

SDN
Controller

Proprietary + ConfidentialThe Beauty And The Beast

SDN
Controller

Middle
Block

● L3 forwarding
● WCMP

Proprietary + ConfidentialThe Beauty And The Beast

Switch ASIC
● extremely powerful -- extremely unpredictable
● think > 1000 config knobs / 21000 modes!

SDN
Controller

Middle
Block

● L3 forwarding
● WCMP

Proprietary + ConfidentialThe Beauty And The Beast

Switch ASIC
● extremely powerful -- extremely unpredictable
● think > 1000 config knobs / 21000 modes!

SDN
Controller

The Beauty And The Beast

Middle
Block

Proprietary + Confidential

restricts switch access

to "blessed" API

The Beauty And The Beast

Switch ASIC
● extremely powerful -- extremely unpredictable
● think > 1000 config knobs / 21000 modes!

Switch ASIC through lens of P4 spec
● embarrassingly simple API
● extremely predictable

(thanks to P4-Based Automated Reasoning)

SDN
Controller

Middle
Block

Proprietary + ConfidentialThe Beauty And The Beast

Switch ASIC
● extremely powerful -- extremely unpredictable
● think > 1000 config knobs / 21000 modes!

Switch ASIC through lens of P4 spec
● embarrassingly simple API
● extremely predictable

(thanks to P4-Based Automated Reasoning)

SDN
Controller

restricts switch access

to "blessed" API

Middle
Block

Proprietary + ConfidentialThe Beauty And The Beast

Switch ASIC
● extremely powerful -- extremely unpredictable
● think > 1000 config knobs / 21000 modes!

Switch ASIC through lens of P4 spec
● embarrassingly simple API
● extremely predictable

(thanks to P4-Based Automated Reasoning)

SDN
Controller

restricts switch access

to "blessed" API

Middle
Block

Additional Benefits:

● Velocity: can ship new/modified APIs
quickly and confidently.

● Optionality: can confidently swap in
any ASIC that meets the spec.

Proprietary + Confidential

Input

Match?

Expected
Output

Actual Output

Automatically generated tests

Switch Under Test

P4-Based Automated Reasoning (P4-BAR)

A success story
● used for every DC deployment role since 2020
● > 200 bugs unique bugs found, < 5 escaped

● published at SIGCOMM 22 ("SwitchV")

■ Reported
■ Resolved

Proprietary + Confidential

Middle
Block

Time

programs

2020 2021 2022 2023 2024 2025 …

Fabric
Border

Top of
Rack

Top of
Rack2

Prog1

Prog2

Prog3

Problem: Scaling it to the Masses

Proprietary + Confidential

Middle
Block

Time

Team
Size

2020 2021 2022 2023 2024 2025 …

Fabric
Border

Top of
Rack

Top of
Rack2

Prog1

Prog2

Prog3

Problem: Scaling it to the Masses

programs

Proprietary + ConfidentialProblem: Cost of P4-BAR Validation

cost(P4-BAR validation) =

cost(P4-BAR dev) + cost(P4-BAR instantiation) + # bugs(prog) · cost(P4-BAR root causing)

Proprietary + ConfidentialProblem: Cost of P4-BAR Validation

cost(P4-BAR validation) =

cost(P4-BAR dev) + cost(P4-BAR instantiation) + # bugs(prog) · cost(P4-BAR root causing)
prog = 1

n

Instantiation

Proprietary + ConfidentialProblem: Cost of P4-BAR Validation

cost(P4-BAR validation) =

cost(P4-BAR dev) + cost(P4-BAR instantiation) + # bugs(prog) · cost(P4-BAR root causing)
prog = 1

n

Root CausingInstantiation Bugs

Proprietary + ConfidentialProblem: Cost of P4-BAR Validation

cost(P4-BAR validation) =

cost(P4-BAR dev) + cost(P4-BAR instantiation) + # bugs(prog) · cost(P4-BAR root causing)
prog = 1

n

Root CausingInstantiation Bugs

Idea 1: Reduce root cause cost
● How: Automation

Idea 2: Reduce instantiation cost
● How: Modular APIs

Proprietary + ConfidentialProblem: Cost of P4-BAR Validation

cost(P4-BAR validation) =

cost(P4-BAR dev) + cost(P4-BAR instantiation) + # bugs(prog) · cost(P4-BAR root causing)
prog = 1

n

Root CausingInstantiation Bugs

Idea 1: Reduce root cause cost
● How: Automation

Idea 2: Reduce instantiation cost
● How: Modular APIs

Idea 3: Delegate per-program work
● How: Powerful yet easy-to-use APIs

Mission: Build tools so user-friendly & powerful that no one wants to write manual tests.

Owned by our clientsOwned by us

Proprietary + Confidential

1. P4 as a Specification Language ✓

2. Problem: Scaling P4-BAR to the masses! ✓

3. Approach 1: High-Level APIs

4. Approach 2: Automating Root Causing

This Talk

Confidential + Proprietary

Dataplane Testing - Historically

Packet
Synthesizer

Production
entries

Switch

Expected
Output
Packets

Actual
Output
Packets

Verify
Match

Input
Packets

P4Runtime

P4 Simulator
(BMv2)

P4Runtime

P4-Symbolic

Proprietary + Confidential

Switch
under Test

P4Runtime

Expected
Output
Packets

Actual
Output
Packets

Verify
Match

P4 Simulator
(BMv2)

P4Runtime

Table
Entries

Spec

Packet
Synthesizer

Input
Packets

P4-Symbolic

DVaaS: Dataplane Validation as a Service

Confidential + Proprietary

()Testbed

DVaaS: Ease of use

dvaas = OK?

2) Replay a
production
snapshot

1) Configure
Testbed

Example: Replay Testing

Confidential + Proprietary

DVaaS: Actual usage code

Proprietary + Confidential

1. P4 as a Specification Language ✓

2. Problem: Scaling P4-BAR to the masses! ✓

3. Approach 1: High-Level APIs ✓

4. Approach 2: Automating Root Causing

This Talk

Proprietary + Confidential
Root Causing: Historic Output

Expected: DATAPLANE packet gets forwarded (1 copies)
Actual: DATAPLANE packet got dropped

Showing the first failure only.
See test artifacts for full list of errors.

== INPUT ===
type: DATAPLANE
packet {

port: "1"
headers {

ethernet_header {
ethernet_destination: "ff:ee:dd:cc:bb:aa"
ethernet_source: "55:44:33:22:11:00"
ethertype: "0x86dd"

}
}

...
== EXPECTED OUTPUT ===
packets {

port: "8"
headers {

ethernet_header {
ethernet_destination: "06:05:04:03:02:01"
ethernet_source: "01:02:03:04:05:06"
ethertype: "0x86dd"

}
}

...

Proprietary + Confidential
Root Causing: Common Questions

Expected: DATAPLANE packet gets forwarded (1 copies)
Actual: DATAPLANE packet got dropped

Showing the first failure only.
See test artifacts for full list of errors.

== INPUT ===
type: DATAPLANE
packet {

port: "1"
headers {

ethernet_header {
ethernet_destination: "ff:ee:dd:cc:bb:aa"
ethernet_source: "55:44:33:22:11:00"
ethertype: "0x86dd"

}
}

...
== EXPECTED OUTPUT ===
packets {

port: "8"
headers {

ethernet_header {
ethernet_destination: "06:05:04:03:02:01"
ethernet_source: "01:02:03:04:05:06"
ethertype: "0x86dd"

}
}

...

Regression? Or new
test?

Why do you expect this?
Maybe you shouldn't / the test is
broken?

Is this an outlier or the
norm?

Perhaps this is a flake?
Can it be reproduced?

Is this even a valid input
packet?

Problem: Answering these questions
currently requires humans.

How do I reproduce this?

Proprietary + Confidential

Simple Solution: Retry packet 100x

Root Causing: Common Questions
Expected: DATAPLANE packet gets forwarded (1 copies)

Actual: DATAPLANE packet got dropped

Showing the first failure only.
See test artifacts for full list of errors.

== INPUT ===
type: DATAPLANE
packet {

port: "1"
headers {

ethernet_header {
ethernet_destination: "ff:ee:dd:cc:bb:aa"
ethernet_source: "55:44:33:22:11:00"
ethertype: "0x86dd"

}
}

...
== EXPECTED OUTPUT ===
packets {

port: "8"
headers {

ethernet_header {
ethernet_destination: "06:05:04:03:02:01"
ethernet_source: "01:02:03:04:05:06"
ethertype: "0x86dd"

}
}

...

Is this reproducible or a flake?

Sending the same input packet reproduces this error
100.00% of the time

Proprietary + Confidential
Root Causing: Common Questions

Expected: DATAPLANE packet gets forwarded (1 copies)
Actual: DATAPLANE packet got dropped

Showing the first failure only.
See test artifacts for full list of errors.

== INPUT ===
type: DATAPLANE
packet {

port: "1"
headers {

ethernet_header {
ethernet_destination: "ff:ee:dd:cc:bb:aa"
ethernet_source: "55:44:33:22:11:00"
ethertype: "0x86dd"

}
}

...
== EXPECTED OUTPUT ===
packets {

port: "8"
headers {

ethernet_header {
ethernet_destination: "06:05:04:03:02:01"
ethernet_source: "01:02:03:04:05:06"
ethertype: "0x86dd"

}
}

...

Is this an outlier, or the norm?

88.27% of 3027 test vectors passed
88.27% of 3027 test vectors produced the correct number
and type of output packets
987 test vectors forwarded, producing 996 forwarded
output packets
1712 test vectors punted, producing 1712 punted output
packets
774 test vectors produced no output packets
All of 1 test vectors attempted had deterministically
reproducible failures

Simple Solution: Report Statistics.

Proprietary + Confidential
Root Causing: Common Questions

Expected: DATAPLANE packet gets forwarded (1 copies)
Actual: DATAPLANE packet got dropped

Showing the first failure only.
See test artifacts for full list of errors.

== INPUT ===
type: DATAPLANE
packet {

port: "1"
headers {

ethernet_header {
ethernet_destination: "ff:ee:dd:cc:bb:aa"
ethernet_source: "55:44:33:22:11:00"
ethertype: "0x86dd"

}
}

...
== EXPECTED OUTPUT ===
packets {

port: "8"
headers {

ethernet_header {
ethernet_destination: "06:05:04:03:02:01"
ethernet_source: "01:02:03:04:05:06"
ethertype: "0x86dd"

}
}

...

Why do you expect this?

== EXPECTED INPUT-OUTPUT TRACE (P4 SIMULATION) ==

Table 'some_table': miss

Table 'ipv4_route_table': hit
Match: ipv4_dst: 10.0.0.0/8
Action: forward(port: 42)

Primitive: 'mark_to_drop' (routing.p4(275))

Table 'multicast_table': hit
...

Packet replication: 4 replicas

Solution: Report packet traces.

Proprietary + Confidential

Solution: Output an executable* proto.

Root Causing: Common Questions
Expected: DATAPLANE packet gets forwarded (1 copies)

Actual: DATAPLANE packet got dropped

Showing the first failure only.
See test artifacts for full list of errors.

== INPUT ===
type: DATAPLANE
packet {

port: "1"
headers {

ethernet_header {
ethernet_destination: "ff:ee:dd:cc:bb:aa"
ethernet_source: "55:44:33:22:11:00"
ethertype: "0x86dd"

}
}

...
== EXPECTED OUTPUT ===
packets {

port: "8"
headers {

ethernet_header {
ethernet_destination: "06:05:04:03:02:01"
ethernet_source: "01:02:03:04:05:06"
ethertype: "0x86dd"

}
}

...

How do I reproduce this?

PacketTestVector test_vector; # Packet + Expected Output
repeated p4::v1::Entity entities; # Entities causing bug
p4.config.v1.P4Info p4info; # API causing bug.
Any additional_metadata_for_reproduction; # Just in case

* In reality, there’s a test fixture that executes the proto.

Can be minimized
to further simplify
debugging

Proprietary + Confidential
Root Causing: Common Questions

Expected: DATAPLANE packet gets forwarded (1 copies)
Actual: DATAPLANE packet got dropped

Showing the first failure only.
See test artifacts for full list of errors.

== INPUT ===
type: DATAPLANE
packet {

port: "1"
headers {

ethernet_header {
ethernet_destination: "ff:ee:dd:cc:bb:aa"
ethernet_source: "55:44:33:22:11:00"
ethertype: "0x86dd"

}
}

...
== EXPECTED OUTPUT ===
packets {

port: "8"
headers {

ethernet_header {
ethernet_destination: "06:05:04:03:02:01"
ethernet_source: "01:02:03:04:05:06"
ethertype: "0x86dd"

}
}

...

What's the pattern?

Aspirational Solution:

● Interpretable Machine Learning

● Fit a binary classifier to the data, e.g.

decision trees

expects
forwarding

failed passed

yes no

Proprietary + Confidential

Wrapping Up

Proprietary + ConfidentialSummary

The P4-Based Automated Reasoning (P4-BAR) paradigm:

● Views P4 programs as machine-readable specifications.

● Automatically establishes that a given switch meets a given specification

(with high probability).

	Slide 1
	Slide 2: Google's Surprising Use of P4
	Slide 3: Google's View: P4 as a Specification Language
	Slide 4: Google's View: P4 as a Specification Language
	Slide 5: Google's View: P4 as a Specification Language
	Slide 6: Google's View: P4 as a Specification Language
	Slide 7: The Beauty And The Beast
	Slide 8: The Beauty And The Beast
	Slide 9: The Beauty And The Beast
	Slide 10: The Beauty And The Beast
	Slide 11: The Beauty And The Beast
	Slide 12: The Beauty And The Beast
	Slide 13: The Beauty And The Beast
	Slide 14: P4-Based Automated Reasoning (P4-BAR)
	Slide 15: Problem: Scaling it to the Masses
	Slide 16: Problem: Scaling it to the Masses
	Slide 17: Problem: Cost of P4-BAR Validation
	Slide 18: Problem: Cost of P4-BAR Validation
	Slide 19: Problem: Cost of P4-BAR Validation
	Slide 20: Problem: Cost of P4-BAR Validation
	Slide 21: Problem: Cost of P4-BAR Validation
	Slide 22: This Talk
	Slide 23: Dataplane Testing - Historically
	Slide 24: DVaaS: Dataplane Validation as a Service
	Slide 25: ()
	Slide 26: DVaaS: Actual usage code
	Slide 27: This Talk
	Slide 28: Root Causing: Historic Output
	Slide 29: Root Causing: Common Questions
	Slide 31: Root Causing: Common Questions
	Slide 32: Root Causing: Common Questions
	Slide 33: Root Causing: Common Questions
	Slide 34: Root Causing: Common Questions
	Slide 35: Root Causing: Common Questions
	Slide 36
	Slide 37: Summary

