
In-Memory Key-Value Store Live 

Migration with NetMigrate

Zeying Zhu, Yibo Zhao, Zaoxing Liu
University of Maryland



In-Memory Key-Value Stores

• Key-value stores are widely used

– Feature store of machine learning

– In-memory caching

– Real-time analytics

• Data amount is large

– Store billions of records

– Retrieve millions of records under low latency constraints



Live Migration is A Key Technique

• No service downtime during key-value shard migration between nodes.
• Why migrate data?

• Load balancing

KV server 1

A B

KV server 2

C D

Client 1 Client 2

Query



• No service downtime during key-value shard migration between nodes.
• Why migrate data?

• Load balancing
• Locality 
• Horizontal scaling

KV server 1

A

KV server 2

C DB

Client 1 Client 2

Query

Live Migration is A Key Technique



Live Migration is A Key Technique

KV server 1

A

KV server 2

C DB

Client 1 Client 2

Query

• No service downtime during key-value shard migration between nodes.
• Why migrate data?

• Load balancing
• Locality 
• Horizontal scaling

• Existing solutions
• Source-based
• Destination-based
• Hybrid



RAMCloud [TOCS ‘15], Remus [SIGMOD’22]

READ: served by source 
WRITE: served by source

Source KV

Migrate all data

Dirty data logs

Client 1 Client 2 Client n…

Destination KV

READ WRITEWRITE

UpdatedUpdated

Source-based Migration



Extra dirty data transfer from source to destination 

Downtime when terminating migration

Low query latency during migration because source node
already has the queried data

RAMCloud [TOCS ‘15], Remus [SIGMOD’22]

READ: served by source 
WRITE: served by source

Source-based Migration



READ: served by destination
WRITE: served by destination

Source KV Destination KV

Migrate all data

PriorityPull not-migrated data

Client 1 Client 2 Client n…

READ WRITEREAD

Rocksteady [SOSP’17]

Not Migrated

Destination-based Migration



Low throughput (drop 66%)

High query latency due to missed data access in the 
destination (increase 100%~400%)

Quickly shift source node’s pressure, short migration time

Rocksteady [SOSP’17]

READ: served by destination
WRITE: served by destination

Destination-based Migration



Fulva [SRDS ‘19]

READ: served by both source and destination
WRITE: served by destination

Source KV Destination KV

Migrate all data

Client 1 Client 2 Client n…

Bookkeeping 
migration states: 

migrated keys

WRITEREAD
Double-READ Double-READ

Not Migrated

Hybrid Migration



Leverage both so performance is better when most of data 
is in the source.

Double-read incurs large bandwidth overhead between 
clients and servers (~50%) because of no fine-grained state 
tracking.

READ: served by both source and destination
WRITE: served by destination

Fulva [SRDS ‘19]

Hybrid Migration



Design Goals of NetMigrate:
• Minimal query performance impact
• Low extra overhead from migration
• Acceptable and tunable migration time

migration time

Query performance

Rocksteady (Destination)

Fulva (Hybrid)

Source-basedNetMigrate

Tradeoff between query performance and migration time

Existing Live Migration Systems



Key Idea: Programmable Top-
of-Rack switches to track the 
migration states.
• Centralized view of all 

data movement
• Real-time information of 

who owns the data

Existing solutions don’t know where the data is and pay cost of 
going to wrong places. 

Clients

…

ToR Switch Controller Key-Value Storage Rack

Storage Servers

Source 
KV

Destination 
KV

Migration Instance 1 Migration Instance 2

Destination 
KV

Source 
KV



Clients

…

ToR Switch Data Plane

ToR Switch Controller

Storage Servers
Migration Instance

Destination 
KV

Source 
KV

Key-Value Storage Rack

Look up migration state

Query



• Flexible programmability 
➢ Parse, read and update custom fields at line rate

• Registers 
➢ Store data

• High line-rate packet processing 12.4 Tbps
Match + Action 

Programmable Parser Programmable Match-Action Pipeline

Memory ALU

… … ……

A Typical Programmable Switch Architecture



• Challenge #1: How to track fine-grained migration states?

–On-switch resources are limited (e.g., 64MB SRAM vs. Millions of KV pairs)

•Challenge #2: How to query during migration?
•Maintain data consistency during migration.
•Read-After-Write, Write-After-Read, Write-After-Write.

Design Challenges of NetMigrate



• Challenge #1: How to track fine-grained migration states?

–On-switch resources are limited (e.g., 64MB SRAM vs. Millions of KV pairs)

•Challenge #2: How to query during migration?
•Maintain data consistency during migration.
•Read-After-Write, Write-After-Read, Write-After-Write.

Design Challenges of NetMigrate



Shrink Record Granularity for Limited Switch Resources

KVS data structure: hash table

Group 1 Group 2 …

Track migration in a coarser record granularity

On-switch resources are limited (e.g., 64MB SRAM vs. Millions of KV pairs)



Three States to Understand Data Location

Group migration states: migrated, ongoing-migration, not-migrated 

Group 1 Group 2 …

Source KV Destination KV

C

A B C D

D

A B
migrated

ongoing-migration

not-migrated



Probabilistic Ownership Tracking 

Bloom Filter
(BF)

1

Track migrated groups

Track ongoing-migration groups

Hybrid Filters

Migrated

Not-migrated

Ongoing-migration

Counting Bloom Filter
(CBF)

+1-1



Tracking Migration States with BF and CBF

Source KV Destination KV

ToR Switch

BF

CBF

A BGroup



Not Started Migration

Source KV Destination KV

ToR Switch

BF 0 0

0 0CBF

A B



Ongoing Migration

Source KV Destination KV

ToR Switch

BF 0 0

1 1CBF

A
B



Finished Migration

Source KV Destination KV

ToR Switch

BF 1 1

0 0CBF

AB



Design Challenges of NetMigrate

• Challenge #1: How to track fine-grained migration states?

–On-switch resources are limited (e.g., 64MB SRAM vs. Millions of KV 
pairs)

•Challenge #2: How to query during migration?
•Maintain data consistency during migration.
•Read-After-Write, Write-After-Read, Write-After-Write.



Query While Guaranteeing Consistency

• Inconsistency example: Read-After-Write

Source KV

Migrate all data

Client 1

Destination KV

Clients

WRITE

READ

Updated

READ

Stale Value

Need to know the latest data location



Data is Consistent When Not Started Migration

Source KV

Migrate all data

Client 1

Destination KV

Clients

READ WRITE

BF 0 0

0 0CBF



Data is Consistent When Finished Migration

Source KV

Migrate all data

Client 1

Destination KV

Clients

READ WRITE

BF 1 1

0 0CBF



Data is Consistent When Ongoing Migration

Source KV

Migrate all data

Client 1

Destination KV

Clients

BF 0 0

1 1CBF Double-READ

WRITE

Double-READ

• Data consistency is maintained by Double-READ.
• Overhead caused by Double-READ is negligible. 



Data is Consistent even with False Positives

Source KV

Migrate all data

Client 1

Destination KV

Clients

BF 1 1

0 0CBF

Updated due to hash collision

PriorityPull

(check more details in our paper)

READ WRITEREAD

Not Migrated

Overhead from false positives is negligible



Putting It Together

ToR Switch Data Plane

Routing

ToR Switch Controller

Migration State
(Probabilistic Data Structures)

Migration 
Instance Table

Key-Value Storage Rack

Servers

Clients

• Leveraging probabilistic data structures on the switch to track 
three migration states.

• Query protocol guaranteeing consistency.
• The overhead caused by false positives and unsure states is small. 



Evaluation

• Testbed

–6.5 Tbps Intel Tofino switch

–3 servers each with an 8-core CPU, a 40G NIC, and 64GB memory

• Baselines

– Source-based migration protocol, Rocksteady, Fulva

• Workloads

–Migrating 256 million KV pairs (~16GB), with 4B key, 64B value

–YCSB with 0%, 5%, 10%, 20%, 30% write ratio

– Source CPU budgets: 100%, 70%, 40%



Overall performance -- Throughput

Up to 78% average throughput improvement compared to Source-based, 
Rocksteady, Fulva with similar migration time.

Setting: YCSB-B (5%) write ratio, source node is not overloaded (100%)



Overall performance – Median Latency

Up to 65% average median latency reduction.
Up to 39% average 99% tail-latency reduction.

Setting: YCSB-B (5%) write ratio, source node is not overloaded (100%)



Network Overhead

Protocols/Overhead Client-side Server-side

Rocksteady 7%~12% 0

Source-based 0 Proportional to write ratio

Fulva ~50% 0

NetMigrate <0.05% <5 × 10−5% 

Extra network bandwidth overhead 
between clients and servers (client-side) 

or between servers (server-side)



Conclusions

• Existing KV store live migration techniques still suffer from low 
query-serving performance and high overhead. 

• We propose NetMigrate, a network-based hybrid live migration 
approach.

–Track fine-grained migration states in programmable data plane.

–Provide enhanced throughput and low migration overheads.

• Open-sourced at https://github.com/Froot-NetSys/NetMigrate.

https://github.com/Froot-NetSys/NetMigrate


Thank You!
Questions?



Packet Formats


	Slide 1
	Slide 2: In-Memory Key-Value Stores
	Slide 3: Live Migration is A Key Technique 
	Slide 4
	Slide 5: Live Migration is A Key Technique 
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Shrink Record Granularity for Limited Switch Resources
	Slide 19: Three States to Understand Data Location
	Slide 20: Probabilistic Ownership Tracking 
	Slide 21: Tracking Migration States with BF and CBF
	Slide 22: Not Started Migration
	Slide 23: Ongoing Migration
	Slide 24: Finished Migration
	Slide 25: Design Challenges of NetMigrate
	Slide 26: Query While Guaranteeing Consistency
	Slide 27: Data is Consistent When Not Started Migration
	Slide 28: Data is Consistent When Finished Migration
	Slide 29: Data is Consistent When Ongoing Migration
	Slide 30: Data is Consistent even with False Positives
	Slide 31: Putting It Together
	Slide 32: Evaluation
	Slide 33: Overall performance -- Throughput
	Slide 34: Overall performance – Median Latency
	Slide 35: Network Overhead
	Slide 36: Conclusions
	Slide 37
	Slide 38

