
Modeling hardware
blocks of network
ASICs using P4

Tourrilhes, Jean (standing in for Hardik Soni)

Company Overview

Introduction
Jean Tourrilhes is a researcher in the Network and
Distributed Systems Laboratory, part of Hewlett
Packard Labs. In a former life, Jean contributed to the
OpenFlow specification. Jean is currently interested
in congestion management and network
virtualization.

HPE is the global edge-to-cloud
company built to transform your
business. How? By helping you
connect, protect, analyze, and act
on all your data and applications
wherever they live, from edge to
cloud, so you can turn insights into
outcomes at the speed required to
thrive in today’s complex world.

Jean Tourrilhes is presenting this work on behalf of
his colleagues, Arthur Simon, Hardik Soni, Khaled
Diab and Puneet Sharma, also in the Network and
Distributed Systems Lab (NDSL) of HPE.

2

Functional
simulator

for
network

ASICs

• Our use case :

– Functional model of packet-processing
features in network ASICs

– Specifying fixed-function parsers and
tables with precise implementation details

– Accurate description of building-blocks
like TCAMs, Hash, RAMs with P4 Tables

– Leverage BMv2 to build a functional
simulator for the ASIC

3

A specification that can compile

4

• Using P4 language to specify hardware features

– Individual features of fixed-function network ASICs

–More formalism and semantics than plain text, pseudo-code, C++ or system C

–Easier to share and read amongst network designers

• Spec should be able to compile and provide a functional simulator

–Remove effort duplication

–Avoid spec diverging from model

– Future: auto-generate spec from model

• Use P4-based specification

–To document features

–To iterate over functional design and evolve

–To simulate the functionality and interaction among HW blocks

Challenges

Build functional simulator from feature specification

Specifying actual hardware implementation of fixed-
function parsers

Expressing features of hardware matching blocks
(TCAMs) with P4 Tables

5

Functional simulator for network ASICs

register-level
HW details

asic-simulator

test-packets

packets out

asic.p4

asic_arch.p4

p4c

asic.json

functional-
simulator-lib

--target=asic

Our Goal:

6

user

Challenges

Build functional simulator from feature specification

Specifying actual hardware implementation of fixed-
function parsers

Expressing features of hardware matching blocks
(TCAMs) with P4 Tables

7

Parsers: Specifying Implementation Detail
• Overloaded Fields in Protocol Headers

–Hardware optimization for metadata and
custom network stack

–Different types of IDs (Type_1 and Type_2) in
same header field

–Example : port number or multicast group

• Limit feature modelling

–Can’t explore handling of ambiguity in model

–Can’t use actual test vectors from hardware6

• Conflict with P4 Type Nesting Rule

–Must map each type to separate header field

–P4 header can not have a member with
header_union type

8

• ID fields with value A and B.
• Each ID can be of either Type_1 or Type_2

Parsers: Union using standard P4

Main header

9

ID Types

Main header

Parsing Main header

Parsing Union

Parser: Union within header type

Main header
ID Types

Main header 10

Parsing Union

Parsing Main header

Parser: Relaxed Type Nesting Rules

• What about setValid, setInvalid and emit operations in case of type nesting?

–For emit:

•A header is valid only if all of its members are valid.

–setInvalid()

• Invalidate all its members, recursively.

–setValid()

•operation on a header requires all its members to be valid.

•All the member headers and header_union should be explicitly set to valid before
their containers are set to valid.

–Compilers can make these checks at compile-time.

• Overall, minor change to semantic of language
11

Challenges

Build functional simulator from feature specification

Specifying actual hardware implementation of fixed-
function parsers

Expressing features of hardware matching blocks
(TCAMs) with P4 Tables

12

Modeling TCAM with P4 tables

13

• TCAM actual semantic different from P4 table

–Order matters – rules have an index

–For example: placement optimization

• Changes to control plane API

–Add, Modify, Delete at a given location in tables

–Augment APIs with index (entry_handle_t) as an in
parameter (currently out parameter)

• Changes to matching API

–Match Operation provides index on a successful hit

–P4 table’s compiler synthesized struct is augmented
with an additional member bit<N> index.

struct apply_result(T, N) {
 bool hit;
 bool miss;
 action_list(T) action_run;
 bit<N> index;
}

An example change in add_entry API
Existing:

mt_add_entry(..., entry_handle_t&)
Added:

mt_add_entry(..., entry_handle_t)

Challenges

Build functional simulator from feature specification

Specifying actual hardware implementation of fixed-
function parsers

Expressing features of hardware matching blocks
(TCAMs) with P4 Tables

14

Conclusion

15

• Using P4 as a low-level language to model hardware blocks

–P4 is a good language to specify features of fixed function network ASICs

–Remove duplication : a specification that can compile

–P4 language goal : from abstractions to specialization, low level descriptions

• P4 toolchain can be leveraged to simulate hardware blocks with detailed
implementation

• Changes to P4 language

– Flexible semantics for nested types in parser (unions)

–Expressing TCAM semantic in table (index)

• Future: Expressing Hash Tables and RAM lookup

Thank You

16

	Slide 1
	Slide 2
	Slide 3: Functional simulator for network ASICs
	Slide 4: A specification that can compile
	Slide 5: Challenges
	Slide 6: Functional simulator for network ASICs
	Slide 7: Challenges
	Slide 8: Parsers: Specifying Implementation Detail
	Slide 9: Parsers: Union using standard P4
	Slide 10: Parser: Union within header type
	Slide 11: Parser: Relaxed Type Nesting Rules
	Slide 12: Challenges
	Slide 13: Modeling TCAM with P4 tables
	Slide 14: Challenges
	Slide 15: Conclusion
	Slide 16

