

P4-enabled Network Slicing and 5G User Plane Function

Professor Chien-Chao Tseng

Department of Computer Science National Yang Ming Chiao Tung University cctseng@cs.nctu.edu.tw

5G Service Based Architecture

• From monolithic to modular **architecture**

- A set of Network Functions (NFs) provide services to other authorized NFs.
- New NFs can be rolled out without impacting existing ones.

5G Network Slicing

- To support services with different requirements
 - eMBB: enhanced Mobile Broadband
 - URLLC: Ultra Reliable Low Latency Communications
 - mMTC: massive Machine Type Communications

A Cloud Native Management and Orchestration Framework

for 5G End-to-end Network Slicing

• Follows 3GPP Management and ETSI NFV-MANO Specification

- All open sources
- NFVO/VNFM: **Operator framework**
- VIM:
 - Kubernetes (Computing:
 - -ONOS(Networking)

VNF:

– free5GC

NE: Network Element, PNF: Physical Network Function NFVI: Network Function Virtualization Infrastructure

Ref. 3GPP TS 28.500 V15.0.0

NYCU CS

- On Transport Network to enforce bandwidth policies
 - Bandwidth Guarantee and Bandwidth Limiting
 - Service Latency Guarantee
- On 5G User Plane Function (UPF)

5G End-to-End Network Slicing with Bandwidth Control

Operators in MANO Framework

Management and Orchestration (MANO)

S-NSSAI: Single Network Slice Selection Assistance Information

E2E NS-5GC with P4 Fabric

- P4 Fabric Switch
 - Place between RANSIM server and Kubernetes node of core NFs
 - Require fabric configuration on ONOS Bandwidth Operator
- Leverage SR-IOV on interfaces toward RANSIM for core NFs, e.g. AMF and UPF
 Hardware acceleration

Transport Network Slicing on P4 Fabric

- Two flows (Flow1 and Flow2): send ICMP packets continuously
 - Transmission Rate: around 15 Mbits/sec
- Bandwidth Limitation on TN slices
 - Downlink bandwidth limiting,
 - Sliced(Flow1): 5 Mbits/sec
 - Sliced(Flow2): 10 Mbits/sec

Downlink Throughput of Two Slices

• Slices with different bandwidth guarantees and limitings

P4 Meter

CIR: Committed Information Rate **PIR**: Peak Information Rate

• Using RFC 2698-trTCM to classify packets into three groups

– Line-rate QoS classifier

Managed through P4 Extern Library

Experiment Environment and Scenario

- Testbed
 - Inventec P4 switch (D10056 Gulmohar2.0T/Intel D-1527/8G)
 - A L2 Switch for traffic measurement
 - Servers (Intel E5-2630/128G/Intel-X710 10GbE) for traffic generation
- Iperf for TCP/UDP flows,
- Http request for Mice TCP flows

Two Slices: Two TCPs in each Slice

- Slice 1: Two TCPs, S1-TCP(f1), S1-TCP(f2),
- Slice 2: Two TCPs, S2-TCP(f1), S2-TCP(f2)

- Flows in same slice fair share sliced bandwidth
- Slices share residual bandwidth proportionally

Two TCPs in One Slice and Two UDPs in the Other

- Slice 1: Two UDPs, S1-UDP(f1), S1-UDP(f2),
- Slice 2: Two TCPs, S2-TCP(f1), S2-TCP(f2)

- Flows in same slice share sliced bandwidth fairly
- Slices share residual bandwidth proportionally

P4-enabled Network Slicing and MEC Services

MEC

大会海棠 7月8日上映

Aliyun (阿里雲)

- P4-enabled 4G User Plane for MEC
 - GTP-U De-cap/encap Hardware Offloading

Q & A

Evaluation

Resource Usage and Bandwidth Policies on TN Slices

Environment Setup

- Software
 - Ubuntu 16.04
 - free5GC Stage 2 Release
- Hardware
 - Quanta D51B-1U server
 - CPU 40 cores
 - RAM 128 Gigabytes
 - Inventec D10056 P4 switch

Details of MANO Framework and BANSs

Deployment Object		BANS-5GC with P4 Fabric	
MANO Framework		Creation of three OperatorsPreparation of TN environment	
First BANS	5G CN Slice	 Creation of shared slice Creation of dedicated slice 	
	TN Slice	 Configuration of bandwidth slice 	
Subsequent BANS	5G CN Slice	 Creation of dedicated slice 	
	TN Slice	 Configuration of bandwidth slice 	

Deployment Time of MANO Framework and BANSs

Deployment Time (sec.)		BANS-5GC with P4 Fabric		
MANO Framework		71.02		
First BANS	5G CN Slice	52.15	32.7 (62.7%)	
	TN Slice		18 (34.52%)	
Subsequent BANS	5G CN Slice	33.21	13.2 (39.75%)	
	TN Slice		18.9 (56.91%)	

Note: Average of ten times of deployment

Memory Usage of MANO Framework and BANSs **Install MANO** Install Install **Second BANS First BANS** Framework 5 4 Dedicated NFs Ready Ready Shared NFs Memory (GBytes) ators CN Slice Slice Slice hst. TN Slice 3 SOS Prepare TN **TN Ready** Z S BANS 2nd BANS Z nst. st. nst. nst. nst. s 2 st Inst. 1 0 **5**s **85**s 25 50 75 100 125 150 175 **145s** Note: One sample per second 28 Time (Seconds)

CPU Load of MANO Framework and BANSs

Install MANO

Framework

- CPU (User) - CPU (Sys)

Install

First BANS

Install Second BANS

Memory Usage of Deploying Numerous Slices

CPU Load of Deploying Numerous Slices

Packet Classification of trTCM

