

P4-IPS:

Deploying Intrusion Prevention System with Machine Learning on P4 Switch

Prof. Charles H.-P. Wen

Computational Intelligence on Automation (C.I.A.) Lab, National Yang Ming Chiao Tung University

**This project is partially sponsored by Edgecore Networks

IoT Security

- IoT security is **unignorable** nowadays
 - various IoT malwares grow rapidly

Intrusion Prevention System

- Existing solutions of intrusion prevention systems (IPS)
 - Hardware IPS
 - SDN + VNF (e.g., Zeek)
 - ⇒ trade-off between performance and cost

Enhancing SDN-based IPS

- SDN-based IPS
 - interact with SDN controller
 - external VNF is time-consuming
 - long response time
- P4-assisted IPS
 - enable in-switch processing
 - fast neural-network computing on switch CPU
 - shorter response time

7

Flow Filtering

- Malware Detection Table
 - determine to drop/forward packets
 - key: five tuple
 - action : forward or drop

Flow Filtering

- Malware Detection Table
 - determine to drop/forward packets
 - key: five tuple
 - action : forward or drop

国立正通

National Chiao Tung University

- Mirror function
 - extract features for Neural Network
 - features: five-tuple + 40-byte payload
 - processed by P4 forwarding pipeline

original packet

- Prevent multiple run of malware detection for one flow
 - extract/send features from the first packet

- Prevent multiple run of malware detection for one flow
 - extract/send features from the first packet

- Prevent multiple run of malware detection for one flow
 - extract/send features from the first packet

- Prevent multiple run of malware detection for one flow
 - extract/send features from the first packet

- Prevent multiple run of malware detection for one flow
 - extract/send features from the first packet

- Prevent multiple run of malware detection for one flow
 - extract/send features from the first packet

- Prevent multiple run of malware detection for one flow
 - extract/send features from the first packet

- Prevent multiple run of malware detection for one flow
 - extract/send features from the first packet

- Prevent multiple run of malware detection for one flow
 - extract/send features from the first packet

- Prevent multiple run of malware detection for one flow
 - extract/send features from the first packet

Malware Detector

Multi-threaded malware detection \bullet thread pool packet handler main thread packet handler wait for packet packet packet . . . coming packet . . . packet packet handler Feature extractor CPU malware detector

Packet Handler

Packet handler

Neural Network Model

- Two hidden layers + 128 nodes per layer
- resource optimized + fast computing

Evaluation Setting

- Host #1 works as sender
 - "tcpreplay" sends flows from pcap

Evaluation Result

- P4 Switch CPU with 4 cores (2 threads per core)
- 3.17X faster than single thread

thread	flow/s	
1	2950	1
2	2975	
3	5649	
4	7353	
5	7752	
6	8196	
7	8849	
8	9345	ł

3.17x

Evaluation Setting

- Measure response time
 - start from packet coming into P4 switch
 - end as determining packet action (forward or drop)

Comparison of 3 IPS

Evaluation Result

Type #1: Signature-based IPS on external server Type #2: SDN-based ML-IPS on external server Type #3: ML-IPS on P4 switch (P4-IPS)

	Type #1	Type #2	P4-IPS
response time (ms)	119.63	51.19	0.34 (single thread)
processing cap ability (flow/s)	2	17	9345 (8 threads)

Conclusion

- P4 switch provides in-switch computing to overcome disadvantages of traditional software-based IDS, meanwhile reducing communication overhead to external server
- Evaluation results
 - response time: **353X** faster than other solutions
 - processing capability: 4672X better than other solutions