
P4 Workshop
Welcome

Nate Foster
Cornell University

1



State  of  P4
Industry Momentum
• Several P4-enabled targets now available
• New P4 products and deployments announced

Academic Interest
• P4 is increasingly being used as a platform for 

teaching and research
•Multiple P4 papers at SIGCOMM ‘17
• Tutorials at PLDI, SIGCOM, etc.

Open Source Community
• P416 released yesterday
• Growing collection of P4 software tools
• New working groups on Archiectures and APIs 2



Systems

P4.org Members

Academia/
Research

Targets

Operators/
End  Users

Original P4 Paper Authors:

• Open source, evolving, domain-specific language
• Permissive Apache license, code on GitHub today

• Membership is free: contributions are welcome
• Independent, set up as a California nonprofit

Solutions/
Services



•200+ attendees
•26 technical talks & demos
•29 organizations from academia and industry

4

• IIT Guwahati
• KAUST
• MIT
• Microsoft
• NIKSUN
• Netcope
• Netronome
• NYU
• Princeton University
• Stanford University

• Technion
• UC Berkeley
• Johns Hopkins
• UCDavis
• UIUC
• Universita della Svizzera

italiana
• VMware Research
• Xflow Research
• Xilinx Labs

• AT&T Labs
• Barefoot Networks
• Bell Canada
• CESNET
• Cisco Systems
• Cornell University
• ETH Zürich
• Eötvös Lorlánd University
• Flowmon Networks
• Google

Today’s  Workshop



5

P416 Language Specification
version 1.0.0

The P4 Language Consortium
2017-05-16

Abstract. P4 is a language for programming the data plane of network devices. This
document provides a precise definition of the P416 language, which is the 2016
revision of the P4 language http://p4.org. The target audience for this document
includes developers who want to write compilers, simulators, IDEs, and debuggers for
P4 programs. This document may also be of interest to P4 programmers who are
interested in understanding the syntax and semantics of the language at a deeper level.

Contents
1. Scope
2. Terms, definitions, and symbols
3. Overview

3.1. Benefits of P4
3.2. P4 language evolution: comparison to previous versions (P4 v1.0/v1.1)

4. Architecture Model
4.1. Standard architectures
4.2. Data plane interfaces
4.3. Extern objects and functions

5. Example: A very simple switch
5.1. Very Simple Switch Architecture
5.2. Very Simple Switch Architecture Description

5.2.1. Arbiter block
5.2.2. Parser runtime block
5.2.3. Demux block
5.2.4. Available extern blocks

5.3. A complete Very Simple Switch program
6. P4 language definition

6.1. Syntax and semantics
6.1.1. Grammar
6.1.2. Semantics and the P4 abstract machines

6.2. Preprocessing
6.2.1. P4 core library

6.3. Lexical constructs
6.3.1. Identifiers
6.3.2. Comments
6.3.3. Literal constants

6.4. Naming conventions
6.5. P4 programs

6.5.1. Scopes
6.5.2. Stateful elements

6.6. L-values
6.7. Calling convention: call by copy in/copy out

6.7.1. Justification
6.8. Name resolution
6.9. Visibility

7. P4 data types
7.1. Base types

7.1.1. The void type
7.1.2. The error type
7.1.3. The match kind type

The P4 Language Specification
Version 1.0.3

November 2, 2016

The P4 Language Consortium

1 Introduction

P4 is a declarative language for expressing how packets are processed by the pipeline
of a network forwarding element such as a switch, NIC, router or network function ap-
pliance. It is based upon an abstract forwarding model consisting of a parser and a set
of match+action table resources, divided between ingress and egress. The parser iden-
tifies the headers present in each incoming packet. Each match+action table performs
a lookup on a subset of header fields and applies the actions corresponding to the first
match within each table. Figure 1 shows this model.

P4 itself is protocol independent but allows for the expression of forwarding plane pro-
tocols. A P4 program specifies the following for each forwarding element.

• Header definitions: the format (the set of fields and their sizes) of each header
within a packet.

• Parse graph: the permitted header sequences within packets.

• Table definitions: the type of lookup to perform, the input fields to use, the actions
that may be applied, and the dimensions of each table.

• Action definitions: compound actions composed from a set of primitive actions.

• Pipeline layout and control flow: the layout of tables within the pipeline and the
packet flow through the pipeline.

P4 addresses the configuration of a forwarding element. Once configured, tables may
be populated and packet processing takes place. These post-configuration operations
are referred to as "run time" in this document. This does not preclude updating a for-
warding element’s configuration while it is running.

1.1 The P4 Abstract Model

The following diagram shows a high level representation of the P4 abstract model.

The P4 machine operates with only a few simple rules.

© 2014-2016, The P4 Language Consortium

Language Evolution



P416 Retains Strengths of P414 

6

• Declarative programming model
Specify the “what” rather than the “how”

• Familiar domain-specific features
Headers, parsers, controls, etc.

• Higher-level constructs
Simplifies programs & facilitates code reuse



New Features in P416 

7

Target-architecture separation
• Portability across targets
• Extensibility through “externs”
Static type system
• Rich constructs for structuring data
• Primitive operations have well-defined semantics
Higher-level programming constructs
• Makes programs more succinct
• Encourages code reuse



Open-Source  Software

8

• Compiler Framework (p4c)
• Software switch (bmv2)
• Tools
• Network emulation (Mininet)
• Test framework (ptf)
• Docker container (p4app)

https://github.com/p4lang



Common Misconceptions

9

Myth Reality
P4 is controlled by a single vendor P4 is being developed by an open consortium

P4 is immature P4 is over 4 years old, and has deployed in 
production environments

P4 is based on a sequential model P4 compilers can generate efficient code that 
takes advantage of parallelism

P4 is limited to simple functionality P416 is extensible via externs

P4 requires a fully programmable target P416 architectures allow smooth mixing of fixed-
function and programmable components

P4 is match-action centric P416 is based on standard imperative 
programming constructs



Commitment to Stability

10

[Borrowed from Aaron Turon with permission]

Our responsibility is to ensure that you never
dread upgrading to a new version of P4. 

If your code compiles with P416 version 1.0.0 
it should compile with P416 version 1.x.y with 
a minimum of hassle.



Thank You
• Program Committee
◦ Calin Cascaval (Barefoot)
◦ Gordon Brebner (Xilinx)
◦ Ben Pfaff (Vmware)
◦ Lorenzo Vicisano (Google)
◦ Andy Keep (Cisco)

• Local Arrangements
◦ Chloe Darsch
◦ Chris Hartung
◦ Prem Jonnalagadda
◦ Melodie Shafazand

11

• P4 LDWG Past Co-chair
◦ Changhoon Kim

• P4 LDWG Members
◦ Mihai Budiu (VMware)
◦ Calin Cascaval (Barefoot)
◦ Chris Dodd (Barefoot)
◦ Andy Fingerhut (Cisco)
◦ Vladimir Gurevich (Barefoot)
◦ Andy Keep (Cisco)
◦ Edwin Peer (Netronome)
◦ Ben Pfaff (VMware)
◦ Cole Schlesinger (Barefoot)


