
Executable	Formal	Semantic	
of	P4	and	Applications

Ali	Kheradmand,	Grigore Rosu
University	of	Illinois	at	Urbana	Champaign

P4	Workshop,	May	2017
1

14



A	need:	Automated	Verification

+ ͢

Complexity
(of	networks	and	hardware)

Flexibility	and	Agility
(of	SDNs	and	P4)

(increased	chance	of)
Subtle	Bugs

!

2



Current	approach

Language	specification
(In	English)

Tool	developer

Verification	 tool

Language	designers

Compiler	developer
Compiler/Interpreter

…

?

?

?

3



Formal	semantics	matter
Example	from	C	language:

P4 Language Specification Version 1.0.3 (November 2, 2016):

“P4 assumes parallel semantics for the application of all
the primitive actions executing as a result of a match in a
given table. The execution of actions across different
tables assumes sequential semantics where the sequence
is determined by the control flow, described in Section 12.”

int main(void)	{
int x	= 0;
return (x	= 1)	+ (x	= 2);	

}

modify_field(hdr.fldA,	1);
modify_field(hdr.fldB,	hdr.fldA);

modify_field(hdr.fldA,	1);
modify_field(hdr.fldA,	2); ?

*

* Rosuet	al.,	http://www.kframework.org/index.php/K_Overview

GCC:	4
Clang:	3
Frama-C	[Filliâtre et	al]:	4
HAVOC	[Lahiri et	al]	:	4
ISO	C11:	undefined

4



Our	vision

Formal	Language	Definition
(Syntax	and	Semantics)

Test	GeneratorInterpreter/Debugger Deductive	Program	
Verifier

Model	Checker

Symbolic	Execution	
Engine

Compiler

Equivalence	Checker …

5



K	Framework	[Rosu et	al,	2010]

• Rewrite-based	programming	language	semantics	engineering	
framework	
• Successfully	used	to	give	complete	semantics	to	C,	Java,	JavaScript,	…

• Semantics:	
• Configuration	(state):	nested	cells
• Rewrite	rules	(transitions):	C[L1 =>	R1,	…	,	Ln =>	Rn]



P4K:	Semantics	of	P414 (V1.0.3)	in	K

• Not	all	features	are	currently	supported
• Enough	rules	to	run	simple	P4	programs	
• e.g:	basic_routing from	p4factory

• Challenge:	ambiguities	and	undefined	behavior
• Parallel	semantics
• Deparsing
• Operands	with	different	widths
• …

• More:	https://github.com/kframework/p4-semantics/blob/master/issues.txt
• Most	addressed	in	P416

7



Tools	(all	for	free!)

P4K

Test	GeneratorInterpreter/Debugger Deductive	Program	
Verifier

Model	Checker

Symbolic	Execution	
Engine

Compiler

Equivalence	Checker …

8



Potential	App	1:	Finding	bugs	using	Symbolic	
Execution
• Property:	Does	the	program	either	drop	the	packet	or	set	the	value	of	
egress_spec?	*

• Start	with	a	symbolic	packet
• Search	for	a	pattern	in	which	neither	the	packet	is	dropped	nor	the	
egress_spec is	set

9

? 𝑃 #$%&'(

*	Nate	Foster,	personal	communication



Potential	App	1:	Finding	bugs	using	Symbolic	
Execution	(cont.)
• Tested	on	basic_routing
• Found	2	type	of	inputs	that	lead	to	violation:
• P.ethernet.etherType !=	0x0800
• P.ipv4.dstAdr	not	in	ipv4_fib	and	ipv4_fib_lpm

10

parser	parse_ethernet {
extract(ethernet);
return	select(latest.etherType)	{
0x0800	:	parse_ipv4;
default:	ingress;

}
}

control	ingress	{
if	(valid(ipv4))	 {
…

}
}

apply(ipv4_fib)	 {
on_miss {
apply(ipv4_fib_lpm);

}
}



Potential	App	2:	Data	plane	verification

• Check	network-wide	reachability	properties	in	data	plane	snapshot	
(for	all	packet	headers)
• E.g:	Does	all	packets	from	A	reach	B?
• HSA[Kazemian et	al,	NSDI’12],	Veriflow[Khurshid et	al,	NSDI’13], Delta-net[NSDI’17],	…

• Can	be	checked	by	inserting	symbolic	packets	and	using	symbolic	
execution
• Need	semantics	of	network
• Easy	to	add	

11



Tools	(all	for	free!)

P4K

Test	GeneratorInterpreter/Debugger Deductive	Program	
Verifier

Model	Checker

Symbolic	Execution	
Engine

Compiler

Equivalence	Checker …

12



Potential	App	3:	Semantic	coverage	
measurement
• “How	much”	of	the	language	semantics	is	covered	by	the	compiler	
tests	suits?
• Similar	technique	for	JavaScript	([Park	et	al,	PLDI’15])	revealed:
• Inconsistencies in	JavaScript	standard	
• Bugs in	Web	browsers

13

Compiler	 test	suit Rule	coverage	report

P4K	Interpreter



More	Potential	Apps

• Automatic	conformance	test	generation	
• Model	checking
• Comprehensive	network	verification		

• by	plugging	controller	programs	written	in	C/Java/…	without	modifcation

• Equivalence	check	/	translation	validation
• Better	language	specification

• Formalization	itself	might	reveal	problems	in	the	specification
• Use	K	rules	in	the	language	specification	

• or	formalize	the	pseudo-code	language	

• [insert	ideas	here]

14



Conclusion

• Formal	semantics	matters
• P4K:	Towards	complete	executable	formal	semantics	of	P4	in	K
• Tools	for	P4	developers	and	designers	based	on	the	semantics	
• Suggestion:	Consider	the	framework	for	future	versions	of	P4	language

• Check	it	out:	https://github.com/kframework/p4-semantics/
• Learn	more:	http://www.kframework.org/
• Looking	for	ideas/collaborators
• Let’s	get	in	touch:	kheradm2@illinois.edu

15

p4workshop


