
NetCache: Balancing Key-Value Stores 
with Fast In-Network Caching

Xin Jin
Xiaozhou Li, Haoyu Zhang, Robert Soule, Jeongkeun Lee,

Nate Foster, Changhoon Kim, Ion Stoica



Key-value stores power online services
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Key-Value Store

Online Service

Get(key), Put(key, value), …

Support heavy read-intensive worloads:
> 1 billion queries per second (BQPS)



Scale out key-value stores for high-performance
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storage servers

per-server throughput
(QPS)
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100-server cluster throughput
(QPS) 1 billion



Key challenge: Dynamic load balancing
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Key challenge: Dynamic load balancing
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storage servers

load

storage servers

load

time t

time t+x

How to handle highly-skewed and rapidly-changing workloads?



Fast, small cache for load balancing
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Ø Cache O(N log N) items [Fan, SOCC’11]
Ø N: number of servers

Ø Performance guarantee
Ø Throughput: N·T

Ø T: per-server throughput
Ø Latency: bounded queue length 

(no server receives more than T load)
Ø Regardless of workload skewness

Ø Requirement
Ø Cache throughput ≈ N·T

storage servers
(e.g., 100 servers with 100 billion items)

cache
(e.g., cache

10,000 items) 

queries



Towards in-memory key-value stores
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cache layer

storage layer

flash/disk
per: O(100) KQPS
total: O(10) MQPS

in-memory

O(10) MQPS

in-memory
per: O(10) MQPS
total: O(1) BQPS

towards
BQPS

key-value
stores

O(1) BQPS



Towards in-memory key-value stores
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cache layer

storage layer

flash/disk
per: O(100) KQPS
total: O(10) MQPS

in-memory
per: O(10) MQPS
total: O(1) BQPS

in-memory

O(10) MQPS

towards
BQPS

key-value
stores

in-network
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NetCache Architecture
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Clients

Key-Value 
Cache

Query 
Statistics

High-performance Storage Servers

Key-Value Storage RackController

L2/L3 
Routing

ToR Switch Data plane

Ø Performance guarantee
Ø BQPS throughput with bounded latency 

with a single rack
Ø Regardless of workload skewness

Ø Data plane
Ø Unmodified routing
Ø Key-value cache to serve hot items
Ø Query statistics to detect hot items

Ø Control plane
Ø Update cache with hot items
Ø Handle dynamic workloads



Query Handling
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Client Server

1

2

Hit Count

Switch Data plane
Cache Statistics

Read Query:
Cache Hit

Client Server

1

4

Miss Count

Switch Data plane
Cache Statistics 3

2

Read Query:
Cache Miss

Client Server

1

4

Invalidate

Switch Data plane
Cache Statisitcs 3

2

Write Query

Cache coherence: write-through in the data plane



Cache Update
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report hot keys

fetch counters

update cache

fetch values

Switch Data Plane Controller Storage Servers

Key-Value 
Cache Store

Heavy-Hitter 
Detector

Counters for 
Cache Keys

Ø Compare counters of new hot keys and cached keys

Ø Use sampling to avoid fetch counters of all cached keys



Variable-Length On-Chip Key-Value Cache
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Match pkt.key==A
Action bitmap=111

idx=0

Match bitmap[0] == 1
Action process_array_0(idx)

0 1 2 3

A Register Array 0

Lookup 
Table

Value 
Table 0

A

A

Register Array 1

Register Array 2

Match bitmap[1] == 1
Action process_array_1(idx)

Match bitmap[2] == 1
Action process_array_2(idx)

Value 
Table 1

Value 
Table 2

Ø Lookup table: map a key to a bitmap and an index

Ø Value table: store value in register arrays



Variable-Length On-Chip Key-Value Cache
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Match pkt.key==A pkt.key==B
Action bitmap=111

idx=0
bitmap=110
idx=1

Match bitmap[0] == 1
Action process_array_0(idx)

0 1 2 3

A B Register Array 0

Lookup 
Table

Value 
Table 0

A B

A

Register Array 1

Register Array 2

Match bitmap[1] == 1
Action process_array_1(idx)

Match bitmap[2] == 1
Action process_array_2(idx)

Value 
Table 1

Value 
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Ø Lookup table: map a key to a bitmap and an index

Ø Value table: store value in register arrays



Variable-Length On-Chip Key-Value Cache
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Match pkt.key==A pkt.key==B pkt.key==C pkt.key==D
Action bitmap=111

idx=0
bitmap=110
idx=1

bitmap=010
idx=2

bitmap=101
idx=2

Match bitmap[0] == 1
Action process_array_0(idx)

0 1 2 3

A B D Register Array 0

Lookup 
Table

Value 
Table 0

A B C

A D

Register Array 1

Register Array 2

Match bitmap[1] == 1
Action process_array_1(idx)

Match bitmap[2] == 1
Action process_array_2(idx)

Value 
Table 1

Value 
Table 2

Ø Lookup table: map a key to a bitmap and an index

Ø Value table: store values in register arrays



Query Statistics
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Per-key counters for each cached item

Count-Min sketch

pkt.key

not cached

cached

hot

Bloom filter

report

sample

Ø New hot key
Ø Count-Min sketch: report new hot keys
Ø Bloom filter: remove duplicate hot key reports

Ø Cached key: per-key counter array
Ø Sample: reduce memory usage



Implementation
Ø Switch: Barefoot Tofino

Ø Throughput: 6.5 Tbps, 4+ bpps; Latency: <1 us
Ø Routing: standard L3 routing
Ø Key-value cache: 64K items with 16-byte keys and 128-byte values
Ø Query statistics: 256K entries for Count-Min sketch, 768K entries for 

Bloom filter

Ø Storage Server
Ø 16-core Intel Xeon E5-2630, 128 GB memory, 40Gbps Intel XL710 NIC
Ø Intel DPDK for optimized IO, TommyDS for in-memory key-value store
Ø Throughput: 10 MQPS; Latency: 7 us
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Evaluation: Switch Microbenchmark
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test the switch performance at full traffic load. The value
process is executed each time when the packet passes an
egress port. To avoid packet size keeps increasing for read
queries, we remove the value field at the last egress stage
for all intermediate ports. The servers can still verify the
values as they are kept in the two ports connected to them.

• Server rotation for static workloads (§6.3). We use one
machine as a client, and the other as a storage server. We
install the hot items in the switch cache as for a full stor-
age rack and have the client send traffic according to a Zipf
distribution. For each experiment, the storage server takes
one key-value partition and runs as one node in the rack.
By rotating the storage server for all 128 partitions (i.e.,
performing the experiment for 128 times), we aggregate
the results to obtain the result for the entire rack. Such
result aggregation is justified by (i) the shared-nothing
architecture of key-value stores and (ii) the microbench-
mark that demonstrates the switch is not the bottleneck.

To find the maximum effective system throughput, we
first find the bottleneck partition and use that server in the
first iteration. The client generates queries destined to this
particular partition, and adjusts its sending rate to control
the packet loss rate between 0.5% to 1%. This sending rate
gives the saturated throughput of the bottleneck partition.
We obtain the traffic load for the full system based on this
sending rate, and use this load to generate per-partition
query load for remaining partitions. Since the remaining
partitions are not the bottleneck partition, they should be
able to fully serve the load. We sum up the throughputs of
all partitions to obtain the aggregate system throughput.

• Server emulation for dynamic workloads (§6.4). Server
rotation is not suitable for evaluating dynamic workloads.
This is because we would like to measure the transient be-
havior of the system, i.e., how the system performance
fluctuates during cache updates, rather than the system
performance at the stable state. To do this, we emulate
128 storage servers on one server by using 128 queues.
Each queue processes queries for one key-value partition
and drops queries if the received queries exceed its pro-
cessing rate. To evaluate the real-time system throughput,
the client tracks the packet loss rate, and adjusts its send-
ing rate to keep the loss rate between 0.5% to 1%. The
aggregate throughput is scaled down by a factor of 128.
Such emulation is reasonable because in these experiments
we are more interested in the relative performance fluctu-
ations when NetCache reacts to workload changes, rather
than the absolute performance numbers.

6.2 Switch Microbenchmark
We first show switch microbenchmark results using snake

test (as described in §6.1). We demonstrate that NetCache is
able to run on programmable switches at line rate.

Throughput vs. value size. We populate the switch cache
with 64K items and vary the value size. Two servers and
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(a) Throughput vs. value size. (b) Throughput vs. cache size.

Figure 9: Switch microbenchmark (read and update).
one switch are organized to a snake structure. The switch
is configured to provide 62 100Gbps ports, and two 40Gbps
ports to connect servers. We let the two servers send cache
read and update queries to each other and measure the maxi-
mum throughput. Figure 9(a) shows the switch provides 2.24
BQPS throughput for value size up to 128 bytes. This is bot-
tlenecked by the maximum sending rate of the servers (35
MQPS). The Barefoot Tofino switch is able to achieve more
than 4 BQPS. The throughput is not affected by the value size
or the read/update ratio. This is because the switch ASIC is
designed to process packets with strict timing requirements.
As long as our P4 program is complied to fit the hardware
resources, the data plane can process packets at line rate.

Our current prototype supports value size up to 128 bytes.
Bigger values can be supported by using more stages or using
packet mirroring for a second round of process (§4.4.2).

Throughput vs. cache size. We use 128 bytes as the value
size and change the cache size. Other settings are the same
as the previous experiment. Similarly, Figure 9(b) shows that
the throughput keeps at 2.24 BQPS and is not affected by the
cache size. Since our current implementation allocates 8 MB
memory for the cache, the cache size cannot be larger than
64K for 128-byte values. We note that caching 64K items is
sufficient for balancing a key-value storage rack.

6.3 System Performance
We now present the system performance of a NetCache

key-value storage rack that contains one switch and 128 stor-
age servers using server rotation (as described in §6.1).

Throughput. Figure 10(a) shows the system throughput un-
der different skewness parameters with read-only queries and
10,000 items in the cache. We compare NetCache with No-
Cache which does not have the switch cache. In addition,
we also show the the portions of the NetCache throughput
provided by the cache and the storage servers respectively.
NoCache performs poorly when the workload is skewed.
Specifically, with Zipf 0.95 (0.99) distribution, the NoCache
throughput drops down to only 22.5% (15.6%), compared to
the throughput under the uniform workload. By introducing
only a small cache, NetCache effectively reduces the load
imbalances and thus improves the throughput. Overall, Net-
Cache improves the throughput by 3.6⇥, 6.5⇥, and 10⇥ over
NoCache, under Zipf 0.9, 0.95 and 0.99, respectively.
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(b) Throughput vs. cache size.

Figure 9: Switch microbenchmark (read and update).
one switch are organized to a snake structure. The switch
is configured to provide 62 100Gbps ports, and two 40Gbps
ports to connect servers. We let the two servers send cache
read and update queries to each other and measure the maxi-
mum throughput. Figure 9(a) shows the switch provides 2.24
BQPS throughput for value size up to 128 bytes. This is bot-
tlenecked by the maximum sending rate of the servers (35
MQPS). The Barefoot Tofino switch is able to achieve more
than 4 BQPS. The throughput is not affected by the value size
or the read/update ratio. This is because the switch ASIC is
designed to process packets with strict timing requirements.
As long as our P4 program is complied to fit the hardware
resources, the data plane can process packets at line rate.

Our current prototype supports value size up to 128 bytes.
Bigger values can be supported by using more stages or using
packet mirroring for a second round of process (§4.4.2).

Throughput vs. cache size. We use 128 bytes as the value
size and change the cache size. Other settings are the same
as the previous experiment. Similarly, Figure 9(b) shows that
the throughput keeps at 2.24 BQPS and is not affected by the
cache size. Since our current implementation allocates 8 MB
memory for the cache, the cache size cannot be larger than
64K for 128-byte values. We note that caching 64K items is
sufficient for balancing a key-value storage rack.

6.3 System Performance
We now present the system performance of a NetCache

key-value storage rack that contains one switch and 128 stor-
age servers using server rotation (as described in §6.1).

Throughput. Figure 10(a) shows the system throughput un-
der different skewness parameters with read-only queries and
10,000 items in the cache. We compare NetCache with No-
Cache which does not have the switch cache. In addition,
we also show the the portions of the NetCache throughput
provided by the cache and the storage servers respectively.
NoCache performs poorly when the workload is skewed.
Specifically, with Zipf 0.95 (0.99) distribution, the NoCache
throughput drops down to only 22.5% (15.6%), compared to
the throughput under the uniform workload. By introducing
only a small cache, NetCache effectively reduces the load
imbalances and thus improves the throughput. Overall, Net-
Cache improves the throughput by 3.6⇥, 6.5⇥, and 10⇥ over
NoCache, under Zipf 0.9, 0.95 and 0.99, respectively.
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NetCache switch can process 2+ BQPS for up to 64K items with 
16-byte keys and 128-byte values. (Larger values can be 
supported with more stages and e2e mirroring.)



Evaluation: System Performance
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NetCache provides 3-10x throughput improvements.

Throughput of a key-value storage rack with 
one Tofino switch and 128 storage servers. 
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Evaluation: Handling Workload Dynamics
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(a) Hot-in workload (radical change).
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(b) Random workload (moderate change).
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(c) Hot-out workload (small change).

Figure 11: Handling dynamic workloads. The throughput is for a single client.

6.4 Handling Dynamics
Finally, we evaluate how NetCache handles dynamic

workloads using server emulation (as described in §6.1). Our
experiments use the Zipf 0.99 workload with 10,000 items
in the cache. Each experiment begins with a pre-populated
cache containing the top 10,000 hottest items. The query
statistics module in the switch is refreshed by the controller
every second. We evaluate how NetCache reacts to three
types of dynamic workloads in terms of system throughput.

Hot-in. We move 200 cold keys to the top of the popularity
ranks every 10 seconds. Figure 11(a) shows how the aver-
age throughput per second and per 10 seconds change over
time. With the in-network heavy hitter detector, the cache
is frequently updated to include new hot keys. As a result,
the per-second throughput recovers very quickly after a sud-
den workload change. In practice, these radical changes are
unlikely to happen frequently. This demonstrates that Net-
Cache is robust enough to react to dynamic workloads even
with certain adversarial changes in key popularity.

Random. We randomly replace 200 keys in the 10,000 most
popular keys every second. The highest ranked popular keys,
in this case, are less likely to be replaced, so the deep drops
in throughput are less frequent, as shown in Figure 11(b). If
we look at the average throughput per 10 seconds, the per-
formance looks almost unaffected by the workload changes.

Hot-out. We let 200 hottest keys suddenly go cold every
second, and increase the popularity ranks of all other keys
accordingly. Since it’s only a change in relative ordering for
most cached keys, the system throughput is almost not af-
fected. Figure 11(c) shows that NetCache can easily handle
hot-out workloads with very steady throughput over time.

7. RELATED WORK
In-memory key-value stores. Given the high-throughput
and low-latency requirements of large-scale Internet ser-
vices, key-value storage systems are shifting to in-memory
designs [1–3, 28–38]. They use a variety of techniques to
improve the system performance, from using new data struc-
tures and algorithms to exploiting system-level optimizations
and new hardware capabilities.

Load balancing. When scaling out key-value stores, the
overall performance is often bottlenecked by the overloaded
servers, due to highly-skewed workloads [5, 6]. Traditional
methods use consistent hashing [39] and virtual nodes [40] to
mitigate load imbalance, but these solutions fall short when
dealing with workload changes. “Power of two choices” [41]
and data migration strategies [12–14] are designed to balance
dynamic workloads, but introduce additional system over-
heads for replication and migration, and have limited ability
to handle large skew. SwitchKV [11] uses an in-memory
caching layer to balance the flash-based storage layer, but is
inadequate when the storage layer is also in memory. EC-
Cache [42] uses online erasure coding to balance in-memory
key-value stores. It splits an item to multiple chunks and thus
is not suitable for small items. As a result, it focuses on the
workloads for date-intensive clusters, whose item sizes are
much larger than typical key-value stores that support web
services as targeted by NetCache.

Hardware acceleration. Recent work on network hard-
ware presents new opportunities to accelerate query process-
ing in datacenter key-value stores. IncBricks [43] designs
middleboxes to cache items inside the network. Compared
to NetCache, IncBricks requires deployments of specialized
hardware (i.e., network accelerators) to collocate with exist-
ing programmable switches, in order to function as an in-
network caching layer. IncBricks primarily focuses on im-
proving the cache hit ratio for performance speedup, and thus
requires larger storage space. In contrast, NetCache provides
a load balancing cache which requires little storage space,
and is able to efficiently handle workload changes.

8. CONCLUSION
We present NetCache, a new rack-scale key-value store

design that guarantees billions of QPS with bounded laten-
cies even under highly-skewed and rapidly-changing work-
loads. NetCache leverages new-generation programmable
switches to build an on-path caching layer to effectively bal-
ance the load for the storage layer and guarantees cache co-
herence with minimal overhead. We believe that NetCache
is only one example of ultra-high performance distributed
systems enabled by high-speed programmable switches.
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hot-in workload
(radical change)

random workload
(moderate change)

hot-out workload
(small change)

NetCache quickly and effectively reacts to a wide range of 
workload dynamics.



Conclusion
Ø NetCache is a new key-value store architecture that uses in-

network caching to balance in-memory key-value stores.

Ø NetCache exploits programmable switches to efficiently detect, 
index, cache and serve hot items in the data plane

Ø NetCache provides high performance even under highly-
skewed and rapidly-changing workloads
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Thanks!


