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A network performance monitoring example:
High tail latencies



High tail latencies

[DCTCP, Sigcomm’10]

Il 50th percentile W 90th percentile
Bl 95th percentile Hm 99th percentile
Il 99.9th percentile

99.9th percentile ==————

Medix

30 — -
20— o e ——
10 — N
0 } " ——
800 AM 8:30 M
a % S

|
[T 7T 1T 11

Figure 8: Response time percentiles for a production appli-
cation having the incast traffic pattern. Forwarded requests

Delay in responding to application requests.



High tail latencies

Where are queues building up?

How did queues build up?
« UDP on-off traffic?
 Fan-in of short flows?

Which traffic caused queue buildup?
« On-off = Throttle UDP
* Fan-in = Workload placement



Classic measurement approaches

% « Sampling (netflow, sflow) Misses queue buildup events
% * Endpoint solutions (e.g., pingmesh)  End-to-end; no direct visibility
% * Counting (flow counters, sketches) No visibility into queues

% « Packet capture (e.g., endace) Not everywhere & always



What monitoring support
should we add to switches?

Goal: general and efficient



Existing proposals

* In-band Network Telemetry (INT)

* Queue sizes and timestamps on packets

* Flow telemetry (Tetration)
« Packet latency, packet size variations, etc.

 Very specific (fixed) metrics, exposed at fixed granularity
 e.g., What about latency variation (jitter)?



Language-directed hardware design



Language-directed hardware design

Performance monitoring use cases

4

Expressive performance query language

4

Line-rate switch hardware primitives

NetAMA

Programmable
key-value store




NetAMA programs

Switch programs
l.e., P4 & Domino

D
>

Programmable switches with] P4 bmv2 and banzai, a
programmable K-V store packet pipeline simulator



NetAMA: Performance query language

» Packet performance stream
» Headers and performance data for each packet at each queue

S:= (switch, gid, hdrs, uid, tin, tout, gsize)

A

Location Packet Queue entry and Queue depth
identification  exit timestamps  seen by packet



Example performance queries (1/3)

* Collect all packets with a 1ms queueing delay

R1 = filter(S, tout - tin > 1ms)

* Operators map streams to streams
* Natural model to compose queries on results of other queries



Example performance queries (2/3)

* Track a smoothed average queueing delay by connection

ewma_q = groupby(S, S5tuple, ewma)

def ewma(avg, tin, tout):
avg = beta*avg + alpha*(tout-tin)

User-defined fold functions



Example performance queries (3/3)

* Only collect packets with EWMA latency higher than 1ms

R4 = filter(ewma_q, avg > 1ms)



Other performance queries (see paper)

* Transport protocol diagnoses
« Fan-in problems (incast and outcast)
* Incidents of reordering and retransmissions
* Interference from bursty traffic

* Flow-level metrics
« Packet drop rates
* Queue latency EWMA per connection
* Incidence and lengths of flowlets

* Network-wide questions
« Route flapping
* High end to end latencies
 Locations of persistently long queues



What hardware primitives implement
the performance query language?



Queue length &
pkt timestamps:
INT metadata

Existing primitives are useful!

Queues/
Ingress pipeline Scheduler | Egress pipeline |
| | | | filter: match-
match/action match/action match/action match/action aCtion ru|es

\

What remains:
groupby !




groupby: Challenges

ewma_query = groupby(S, 5-tuple, ewma)
def ewma(avg, tin, tout):
avg = (1-alpha)*avg + alpha*(tout-tin)

« Compute & update a value in memory for each packet (@1Ghz)
« Scale to millions of aggregation keys (e.g., 5-tuples)

 Memory must be fast and large: neither SRAM nor DRAM works!



Caching:
the illusion of fast and large memory



Caching Off-chip backing

On-chip cache store (DRAM)
(SRAM)

Key [ Value

Key | Value




Caching

Off-chip backing
On-chip cache store (DRAM)
(SRAM)

Key [ Value

Key | Value

Read value for
S-tuple key K
——
Modify value

using ewma

Write back
updated value




Caching Off-chip backing
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Modify and write must wait for DRAM.

Non-deterministic latencies stall packet pipeline.



Instead, we treat cache misses as
packets from new flows.



Cache misses as new keys Off-chip backing

On-chip cache store (DRAM)
(SRAM)

Key | Value

Read value for
key K




Cache misses as new keys
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Cache misses as new keys

Read value for

key K
—

On-chip cache
(SRAM)

Value\) Evict K.V’

wait for.
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Nothing to

Off-chip backing
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Packet processing doesn’t wait for DRAM.

Retain 1GHz packet processing rate!«s




What should the merge do?

« Accumulate results of folds across evictions of a key

» Suppose: Fold function g over a packet sequence p1, p2, ...

g(s)
\_'_I

Action of g over the packet sequence s



The Merge operation

merge( g(sl), g(sé))=g(sl; s2 )

T T

Vdram Vsram Original fold over the
entire packet sequence

« Example: if g is a packet counter, merge is just addition!



For general folds, it is impossible to merge
accurately with small extra memory.

(formal result in paper)



Linear-in-state: Class of mergeable folds

» Updates mergeable with small memory:

= A *S + B
State of the Functions of a bounded number
fold function of packets in the past

« Examples: Packet and byte counters, EWMA, any functions of
bounded number of packets, ...



Linear-in-state: Merge operation

cEWMA:S = A * S + B where A and B are constants

mer'ge(Vd,.am, Vsram) = Vsram T (AN) : (Vdram o VO)



System feasibility



Is the system design feasible?

« Cache design feasibility

- Hash-based lookup Match-action tables

- Value update operations y/  Multiply-accumulate instruction (<10 stages)
- Cache eviction logic LRU processor caches

« SRAM area

Tradeoff: Trace-driven

« Backing store feasibility .
evaluation

* Tuples/second processed



Measuring Evictions vs. Cache size

« Core router and data center traces with ~100M packets each
» Core routers from 2014, 2016 and university data center from 2010

» 64-port 10Gbit/s switch
* Query aggregates by 5-tuple with 24-bit state

* Evictions vs. 8-way LRU cache memory sizes
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Measuring Evictions vs. Cache size
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Takeaways

« Design expressive language to identify flexible hardware primitives

* Linear in state: fully accurate per-flow aggregation at line rate

alephtwo@csail.mit.edu




