
Toward	Self-Driving	Networks
Jennifer	Rexford



Self-Driving	Network

• Complete	control	loop
–Measure
– Analyze
– Control

• Examples
– Direct	traffic	over	the	best	performing	path
– Block	or	slow	the	heavy-hitter	flows

• Possible	now	in	the	data	plane!
1

measure

analyze

control



A	Constrained	Computational	Model

2

Packet
parser

Match Action

m1 a1

Registers

Match-action	tables

Match Action

m1 a1

Registers

Match-action	tables

.	.	.

metadata

Small	amount	
of	memory

Pipelined	
computation

Limited	
computation



Hop-by-Hop	Utilization-aware	
Load-balancing	Architecture
Naga	Katta,	Mukesh Hira,	Changhoon Kim,	
Anirudh Sivaraman,	and	Jennifer	Rexford

http://conferences.sigcomm.org/sosr/2016/papers/sosr_paper67.pdf

3

HULA



HULA	Multipath	Load	Balancing

• Load	balancing	entirely in	the	data	plane
– Collect	real-time,	path-level	performance	statistics	
– Group	packets	into	“flowlets”	based	on	time	&	headers
– Direct	each	new	flowlet over	the	current	best	path

4

S1

S2

S3

S4

ToR 10

ToR 1
Data



Path	Performance	Statistics

• Using	the	best-hop	table
– Update the	best	next-hop	upon	new	probes
– Assign a	new	flowlet to	the	best	next-hop

5

S1 S3

S4

Best-hop	table
Best	Next-Hop Path Utilization

S3 50%

S4 10%

… …

0

1
…

Dest
ToR

Data
Data

Probe

Probe



Flowlet Routing

6

Flowlet table

S1 S3

S4• Using	the	flowlet table
– Update	the	next	hop	if	enough	time	has	elapsed
– Update	the	timestamp	to	the	current	time

• Forward	the	packet	to	the	chosen	next	hop

Dest ToR Timestamp Next-Hop

ToR 10 1 S2

ToR 0 17 S4

… … …

0

1
…

h(flowid)

Data
Data



Putting	it	all	Together

7

data	
packet

current	best	
next-hop	S3

chosen	
next-hop

Update	next-hop	
(if	enough	time	

elapsed)	and	time

Dest ToR Timestamp Next-Hop

ToR 10 1 S2

ToR 0 17 S4

… … …

Best	Next-Hop Path Utilization

S3 50%

S4 10%

… …

0

1
…

Dest
ToR

0

1
…

h(flowid)



Heavy	Hitter	Detection	
Entirely	in	the	Data	Plane

Vibhaalakshmi Sivaraman,	Srinivas	Narayana,	Ori	
Rottenstreich,	S.	Muthukrishnan,	and	Jennifer	Rexford

https://conferences.sigcomm.org/sosr/2017/papers/sosr17-heavy-hitter.pdf

HashPipe



Heavy-Hitter	Detection

• Heavy	hitters
– The	k largest	trafic flows
– Flows	exceeding	threshold	T

• Space-saving	algorithm
– Table	of	(key,	value)	pairs
– Evict	the	key	with	the	
minimum	value

Id Count
K1 4
K2 2
K3 7
K4 10
K5 1
K6 5

New	
Key	K7 Table	

scan



Approximating	the	Approximation

• Evict	minimum	of	d entries
– Rather	than	minimum	of	all	entries
– E.g.,	with	d	=	2	hash	functions

10

Id Count
K1 4
K2 2
K3 7
K4 10
K5 1
K6 5

New	
Key	K7

Multiple	
memory	
accesses



Approximating	the	Approximation

• Divide	the	table	over	d stages
– One	memory	access	per	stage
– Two	different	hash	functions

11

Id Count
K1 4
K2 2
K3 7

New	
Key	K7

Id Count
K4 10
K5 1
K6 5

Going	back	to	
the	first	table



Approximating	the	Approximation

• Rolling	min	across	stages
– Avoid	recirculating	the	packet
– …	by	carrying	the	minimum	along	the	pipeline

12

Id Count
K1 4
K2 10
K3 7

New	
Key	K7

Id Count
K4 2
K5 1
K6 5

Id Count
K1 4
K7 1
K3 7

Id Count
K2 10
K5 1
K6 5

(K2,	10)



P4	Prototype	and	Evaluation

13

Id Count
K1 4
K2 10
K3 7

Id Count
K4 2
K5 1
K6 5

New	
Key	K7 (K2,	10)

Hash	on	
packet	header

Packet	
metadata

Conditional	updates	to	
compute	minimum

Register	
arrays

High	accuracy	with	overhead	
proportional	to	#	of	heavy	hitters



Conclusion

• Self-driving	networks
– Integrate	measure,	analyze,	and	control
– Distribute	across	the	network	devices

• Enabled	by	programmable	switches
– Parsing,	processing,	and	state

• Approximate	data	structures
– Limited	memory	for	storing	state
– Limited	processing	per	packet

14


