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Self-Driving	Network

• Complete	control	loop
–Measure
– Analyze
– Control

• Examples
– Direct	traffic	over	the	best	performing	path
– Block	or	slow	the	heavy-hitter	flows

• Possible	now	in	the	data	plane!
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A	Constrained	Computational	Model
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Hop-by-Hop	Utilization-aware	
Load-balancing	Architecture
Naga	Katta,	Mukesh Hira,	Changhoon Kim,	
Anirudh Sivaraman,	and	Jennifer	Rexford

http://conferences.sigcomm.org/sosr/2016/papers/sosr_paper67.pdf
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HULA	Multipath	Load	Balancing

• Load	balancing	entirely in	the	data	plane
– Collect	real-time,	path-level	performance	statistics	
– Group	packets	into	“flowlets”	based	on	time	&	headers
– Direct	each	new	flowlet over	the	current	best	path
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Path	Performance	Statistics

• Using	the	best-hop	table
– Update the	best	next-hop	upon	new	probes
– Assign a	new	flowlet to	the	best	next-hop
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Flowlet Routing
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Flowlet table

S1 S3

S4• Using	the	flowlet table
– Update	the	next	hop	if	enough	time	has	elapsed
– Update	the	timestamp	to	the	current	time

• Forward	the	packet	to	the	chosen	next	hop
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Putting	it	all	Together
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Heavy	Hitter	Detection	
Entirely	in	the	Data	Plane

Vibhaalakshmi Sivaraman,	Srinivas	Narayana,	Ori	
Rottenstreich,	S.	Muthukrishnan,	and	Jennifer	Rexford

https://conferences.sigcomm.org/sosr/2017/papers/sosr17-heavy-hitter.pdf
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Heavy-Hitter	Detection

• Heavy	hitters
– The	k largest	trafic flows
– Flows	exceeding	threshold	T

• Space-saving	algorithm
– Table	of	(key,	value)	pairs
– Evict	the	key	with	the	
minimum	value
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Approximating	the	Approximation

• Evict	minimum	of	d entries
– Rather	than	minimum	of	all	entries
– E.g.,	with	d	=	2	hash	functions
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Approximating	the	Approximation

• Divide	the	table	over	d stages
– One	memory	access	per	stage
– Two	different	hash	functions
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Approximating	the	Approximation

• Rolling	min	across	stages
– Avoid	recirculating	the	packet
– …	by	carrying	the	minimum	along	the	pipeline
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P4	Prototype	and	Evaluation
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Conclusion

• Self-driving	networks
– Integrate	measure,	analyze,	and	control
– Distribute	across	the	network	devices

• Enabled	by	programmable	switches
– Parsing,	processing,	and	state

• Approximate	data	structures
– Limited	memory	for	storing	state
– Limited	processing	per	packet
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