What P4 Can Learn From
Linux Traffic Control
Architecture

Jamal Hadi Salim
Mojatatu Networks



Intro To Linux TC




Intro To Linux TC

We define Network Service as:

The treatment of selected network packets, as
defined by a user policy, so as to achieve a
defined goal on the selected packets.

The TC architecture is a Network
Service Infrastructure

e Has been around since late 90s

Functional Block Types are abstracted to allow
composition of policy graph(s) to achieve a
Network Service

4 Functional Block Types

Qdiscs provide templating for queue
algorithms  (enqueuing and  dequeuing
packets)

Classifiers provide templates that define
filtering algorithms (to discriminate/select
packets)

Actions provide templating for arbitrary
packet processing

Classes provide templating for encapsulating
qdisc FBTs to allow service topology
branching



Intro To Linux TC: Functional Block Types

Some Qdisc Kinds: Some Action Kinds:
e  Pfifo which implements a basic packet counting e gact which implements amongst other things
FIFO queueing algorithm. dropping and accepting of packets.
® RED which implements the Random Early e  mirred which implements redirecting or mirroring
Detection(RED) algorithm. packets.
e DRR which implements the Deficit Round e skbedit which implements metadata editing on a
Robin(DRR) algorithm. packet.

e pedit which implements arbitrary packet editing

Some Classifier Kinds:

e w32 which implements a 32-bit key/mask (ternary, Class Kinds
Ipm and exact) matching algorithm. e Classes provide templating for encapsulating

e flower which implements a multi-tuple matching qdisc FBTs to allow service topology branching.
algorithm. On their own classes do not implement

e fw which implements a (skbmark) metadata algorithms, so there is only one kind.

based matching algorithm.
e Others implementing string matching, ebpf etc
etc



Intro To Linux TC: Policy Graphs

All FBT instances have;

Control
interface

handle A:0
parent B:x

e A 32 bit node id used as graph vertex id

o Inatree graph a parentid as well
e A control interface

o Each node is configured individually

S

——X Ee =\
enqueue dequeue
—— —

g

A Service graph anchored at a location

e FBT node instances are composed to
form a service using node IDs




Intro To Linux TC: Policy Graph Anchors

To build a TC policy topology we

need a root/start node ID (associated

with a port/netdev)

e An ID of OxFFFFFFFF is reserved for use
as a handle for the anchor point of the
EGRESS topology.

e AnID of OXxFFFFFFF3 is reserved for use
as a handle on the egress anchor point for
the EGRESSCLSACT topology.

e AnID of OxFFFFFFFT1is reserved for use as
a handle for the anchor point of the
INGRESS topology.

e AnID of OxFFFFFFFZ2 is reserved for use
as a handle for the INGRESSCLSACT
topology.

e More could be added at different stack
points

Network Stack




Intro To Linux TC Qdisc Subsystem




EGRESS Service Topology

Parent:Root
Policy graph nodes composed of: Find: Prio
|

e Classifiers | T >
e Actions

e Queueing algorithms
e Scheduling algorithms

Classid: 1:1 Parent 1:0

Policy scripting BNF grammar via the tc utility
e |tis possible to describe more than match-action
e Policy not part of datapath program (apply())

o  Graph composition of different nodes done in the control plane




Sample EGRESS Service Topology

Parent:Root
Handle: 1:0
Kind: DRR
| DRR Enqueue Class selected by classifier-action block
\ EZ?:ss

Classid: 1:1 Parent 1:0

Classid: 1:2 Parent 1:0

Classid: 1:3 Parent 1:0

Prio gdisc Enqueue Class selected

classifier-action block

Classid: 20:1 Parent 20:0

Classid: 20:2 Parent 20:0

Classid: 20:3 Parent 20:0




Intro To Linux TC Classifier Action
Subsystem




— Yy e CONTINUE

Basic Classifier Action Chain/Pipeline

Decreasing Priority

RECLASSIFY

)

GOTOCHAINX

|

CA  be=CONTINUE

CONTINUE

DROP/ACCEPT/STOLEN

;

¢

%

Multi Classifier types in a chain

N

e Multi tuple (flower)
e Raw OLV matcher (u32)
e String matches, etc

e Pipeline in priority order

e Dynamic runtime control (as
opposed to static compile time)
o Add, remove and reroute CA
blocks
o Add, remove and reroute
Actions

e Action Block Result
opcodes dictate exec path




More Complex Classifier Action Pipeline

Each classifier match keyed by

A A

~ Classifier Chain
e i | e (N ‘ {protocol, priority, header}
<o I — LeonmpEl = — j e Lowest priority is default
e Acton Foa o No need for speacial Default
PRPERRY s S T Rt sl matches
—
s o — TC CA Blocks shareable
Q 3 Classifier Chain s e Across ingress, egress +port
£ m— o P4 MA can only exist within a
------------------ {conTinuE] control block
------- | Protocol | Priority




Peeking into a Classifier Action Block

Action Block
croare—o[ Multiple Actions per match rule

—] Action
4\ STOLEN / Execute bl

\ Classifier Chain / é& index: 2 OPCODES a re
S g E Execute ———» Aio;i;n ) .
Y rwen ey | e O 1. programmed into the actions

' Execute ——» A::m .
R oo e £ esut Cote— i 2. generated by the actions based on
po e cone— | i runtime conditions

—
b I Ebaniil
: \ Action Block
: oo ooe il B Each action can act on the whole packet
| o e - 8 e Consider an action that does packet
— — — — —[FETSF - — — g :
b g TR compression for example
o e '_Re:“'“’:"’e_’ — o P4 deals with headers only?
" e Resut Cote —| ndese2 o Means activity where the whole packet is
2 - M Execite : processed requires redirection to an

external device?




Actions Runtime Implementation vs Abstraction

Action Block More OPCODES: REPEAT, PIPE, JUMPX
/P\ _ Allows programming control abstraction
o Action ) : :

cconcd [ e || o if/else/elseif/while/goto

Action
<€ STOLEN =efee e STELE'\@EPE‘\Tz* yap

 JUMPwPIPE~ L_index:68 o
Pe

«Ce ACCEPT oo

Dispatch
Loop

ACCEPT/PIPE | borg

index: 8 P+M

P+M
S e e e e »| Action p+M/v E
0gg

RECLASSIFY/PIPE=] index: 22 —P+M+ L p+M—P

<€ =RECLASSIFY s o " 4

Action f
P+M s

P+M
»» CONTINUE/PIPE 1»»s+4 ingg;r-‘27 )
<€+ +++CONTINUE shenses .

< DROP




Peeking Into Actions Implementation

Action kind = foo ID=x

Index

Attribute
|

Attribute
2

-
stamps

cookie

(opt)

Actions are abstracted as indexed tables
e Each action has one table per instance

Control instantiates action table rows with
desired attributes
e When specifying the actions with
matches (by value as in P4 semantics)
e Independently then binding to matches
(by reference)




Peeking Into A Classifier Action Block

Protocol

Priority

Match rule

Actions

Action kind = foo ID=x

Index

Attribute
1

Attribute
2

t-
stamps

cookie
(opt)

19pI0

Action
ID

Action
Index

Action
ID

Action
Index

Action
ID

Action
Index

Action
ID

Action
Index

Action
ID

Action
Index

Action kind = bar

ID=y

Attribute
1

Attribute
2

t-
stamps

cookie
(opt)

Matches point to an ordered list of

actions

e From a table perspective
actions are referred to using a
foreign key

e From a s/w implementation
perspective they are pointers
to the action info structures




Action Sharing

Aond + 0101d

Action kind = foo ID=x

Attribute
1

Attribute
2

t-
stamps

cookie
(opt.)

Protocol| Priority Match rule Actions
Action | Action
1D Index
Action | Action
1D Index
Action | Action
D Index
Action | Action
D Index
Action | Action
1D Index
Protocol| Priority Match rule Actions
Action | Action
1D Index
Action | Action
1D Index
Action | Action
D Index
Action | Action
1D Index

v

Action kind

= bar

ID=y

Attribute
1

Attribute
2

stamps

cookie
(opt)

Because actions are referenced by
their {type id, index} they can be
shared by multiple matches




How TC Can Help P4




Suggestions: Modularity And Policy Control

Allow for decomposable construction of match-action
e Runtime binding

e |[ndependent upgrades and maintenance
o Add a new action without recompiling the P4 program

Q: How difficult would it be to have hardware implement
dispatchers for Classifier-Action?

Move apply() out to control plane

e New policy language? tc cli has a BNF grammar that would be a good start

e Graph policy definition of the different constructs
o Independent policy updates




Suggestions: Traffic Management

Schedulers and enqueue algorithms
e Is PIFO sufficient?

Hierarchical construction
e Possible if TC graph abstraction is adopted



Suggestions: Multiple Actions Per Match

Doable with an action dispatch loop



Suggestions: Sharing Of Tables And Actions

TC supports Match-Action blocks to be shared on different
controls
e Achievable on P4 hardware?

TC supports sharing of actions across controls
e P4 already supports it for meters and counters
o Just need to make it generic for all actions



Suggestions: Event Modelling

Not sure how well to define eventing to controller
e T[C kernel allows to notify subscribers of datapath and control
activities (table changes etc)



Back Slides: Sample Service
Topologies




EGRESS Classless Service Topology

Very simple service topology

e No matches or actions T ] ,,m
o Implicit metadata classification [ Stack q—e
e Anchored at Egress of a

port/netdev




EGRESS Classful Service Topology

~= @




EGRESS Complex Classful Service

Port
’




EGRESS Clsact Service Topology

CA Block




INGRESS Service Topology

CA Block




INGRESS To Egress Service Topology

Port \ 4
*




