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Motivation



Motivation

Goal: Grow Network Programmability ecosystem
● Datapath definition using P4

○ Linux kernel native P4 implementation
○ Mundane developer knowledge automated into compiler

■ knowledge shift to system (and P4) from HTA kernel skills
■ Zero upstream effort

● Same interfaces for either s/ware or h/ware datapaths
○ TC offload functionality



Motivation
● Why P4?

○ Only open/existing standardized (with h/w) language for describing datapaths

○ Commoditization happening with native P4 support on xPUS (Intel and AMD)
■ Intel Mev support in progress

○ Large consumers of NICs require at minimal P4 for datapath behavioral 
description if not implementation
■ Eg MS DASH

○ To Each, Their Itch

■ Conway's Law: Organizations model their datapath based on their needs

■ Ossification challenges: It's not just about traditional TCP/IP anymore



Motivation
● Why Linux Kernel?

○ Mother of all networking infrastructure
■ If it beeps and/or has LEDs and maybe emits smoke it is more than likely 

running Linux
○ Singular API for offloads (via vendor driver)
○ Reuse existing TC interface

■ Consistent regardless of deployment being SW or HW



P4TC Workflow And 
Runtime Architecture



Introduction to P4TC
● TC based kernel-native P4 implementation
● Learn from previous experiences (tc flower, u32, switchdev, etc) and scale

○ Kernel independence
○ Control plane transaction rate and latency

● P4 Architecture Independence
○ Currently PNA with some extra “constructs”

■ Not hard to add other architectures
■ This is about progressing network programmability in addition to expanding P4 reach

● Vendor Independent interfacing
○ No need to deal with multiple vendor abstraction transformations (and multiple indirections)
○ No need for userspace punting infrastructure (popularized by Cumulus)



P4TC: Building On TC Offload
● Datapath definition using P4

○ Generate the datapath for both s/w and vendor h/w
■ Functional equivalence between sw and hw

● P4 Linux kernel-native implementation
○ Kernel TC-based software datapath and Kernel-based HW datapath offload

■ Understood Infra tooling which already has deployments
○ Seamless software and hardware symbiosis
○ Functional equivalence whether offloading or s/w datapaths

■ Bare Metal, VMs, or Containers
○ Ideal for datapath specification

■ test in s/w container, VM, etc) then offload when hardware is available



P4TC Software Datapath Workflow

Generated
1. P4TC Template (Loaded via generated) script
2. P4TC Introspection json (used by CP)
3. eBPF s/w datapath (at tc and/or xdp level)

*Per packet execution engine 
(compiled and loaded when instantiating)



P4TC Workflow With HW offload

HW offload path also generates:
● Binary hardware blob

○ Compatible with vendor hardware
○ Loaded via firmware upload mechanisms



P4TC Runtime S/w Datapath

● eBPF serves as per packet exec engine
○ Parser, control block and deparser

● P4 objects that require control state reside 
in TC domain (attached to netns)

○ Actions, externs, pipeline, tables and 
their attributes (default hit/miss 
actions, etc)

○ Kfunc to access them from ebpf 
when needed



P4TC Datapath With HW offload



Control Plane Integration



Control Plane Runtime CRUDXPS Interface

14

Goal: Very High throughput and Low Latency interface

#create a single table entry
tc p4ctrl create myprog/table/control1/mytable ip/dstAddr 1.1.1.1/32 prio 16 \
action myprog/control1/drop

<VERB> <NOUN [OPTIONAL DATA]>+

#Read a single Table entry
tc p4ctrl get myprog/table/control1/mytable ip/dstAddr 1.1.1.1/32 prio 16

#Read/Dump a whole Table
tc p4ctrl get myprog/table/control1/mytable

#create many entries
tc p4ctrl create myprog/table/control1/mytable \
   entry ip/dstAddr 10.10.10.0/24 prio 16 action myprog/control1/drop \ 
   entry ip/dstAddr 1.1.1.1/32 prio 32 action myprog/control1/drop \
   entry ip/dstAddr 8.8.8.8/32 prio 64 action myprog/control1/drop



P4TC Control API Abstraction

Interface Goals:
● High performance 1M/s + transactions

○ all the way to HW
● Interface with standard linux tooling (tc)
● Modernized Control approach to handle 

incremental operations



Performance



Some S/Ware Performance Numbers
Simple l3 forwarding app

● Data path - Intel Cascade Lake CPU, NVIDIA 25Gbps CX6 card:
○ 64 byte packets achieved 10M packets per core and 35M on 6 cores

● Control path - VM on AMD Ryzen 4800H (4 allocated CPUs):
○ “Worst Case” implies action params were allocated and “Best case” implies actions are 

preallocated
○ Test case adds 1M entries as fast as possible

■ Best case 641k entries per second on 1 core
■ Worst case 463k entries per second on 1 core
■ Best case on 4 cores 1.78M entries per second
■ Worst case on 4 cores 1.64M entries per second 



Challenges And 
Opportunities



Some Challenges And Opportunities (1)
● Kernel Challenges

○ Assumptions of statically defined  objects like P4 match actions
■ Introduced templating DSL to teach the kernel how to manifest a P4 pipeline

○ eBPF non-turing completeness
■ Used kfuncs

○ Social challenges in upstream process
■ Scriptable Version 1 met huge resistance from the eBPF folks

● Took us 10 months of multiple people effort to convert to eBPF



Some Challenges And Opportunities (2)
● P4 not well suited for defining control constructs

○ We worked around things by introducing annotations
● P4 constructs being hardware biased

○ Eg deparser emit centres around headers vs payload splitting
■ Ok for HW. SW has the full payload and dont need to emit headers when no header edit

● P4 Const definitions for tables and default actions to make them read-only 
○ Opportunity: We extended to allow for a more refined approach for runtime objects

■ “CRUDXSP” Permissions to describe what the control plane or datapath is allowed to do
● Externs

○ P4 provides signature definitions for externs
○ Work the same way from a control plane perspective as any other object using annotations
○ User defined custom externs can be written as kernel modules

■ C or Rust, and interfaced with generated kfuncs from eBPF
■ Simple custom externs dont require any code



     Future Work And Status



Ongoing and Future work
● Ongoing work

○ Improvement and stabilization of generated code
■ We may be missing some missing features

○ More refinement of externs
○ Generating datapath test cases using p4testgen
○ Generating of control plane test cases
○ Add other P4 architectures

■ Should not require kernel changes
● Future work

○ Go beyond P4: experiment then push for P4 standardization
○ Teach or build a new compiler to generate “distributed pipelines”



Status
● Code has been ready for some time, most effort is spent juggling with 

upstream folks!
○ Sent V9 last week

■ Kernel: https://github.com/p4tc-dev/linux-p4tc-pub
■ Iproute2: https://github.com/p4tc-dev/iproute2-p4tc-pub

● Compiler: https://github.com/p4lang/p4c/tree/main/backends/tc
● Vagrant Tutorial Link

○ https://github.com/p4tc-dev/p4tc-tutorial-pub/tree/main
● Examples link

○ https://github.com/p4tc-dev/p4tc-examples-pub.git
● Good central link: 

○ https://www.p4tc.dev

https://github.com/p4tc-dev/linux-p4tc-pub
https://github.com/p4tc-dev/iproute2-p4tc-pub
https://github.com/p4lang/p4c/tree/main/backends/tc
https://github.com/p4tc-dev/p4tc-tutorial-pub/tree/main
https://github.com/p4tc-dev/P4TC-examples-pub.git
https://www.p4tc.dev


Small Demo
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