Introducing P4TC

A P4 Implementation on Linux Kernel

Traffic Control

Euro P4 workshop (Dec 08/2023)
Paris, France

Jamal Hadi Salim?!, Deb Chatterjee?, Victor Nogueiral, Pedro Tammela?, Tomasz Osinski% 3, Evangelos Haleplidis 4,
Sosutha Sethuramapandian?, Balachandher Sambasivam?, Usha Gupta?, Komal Jain?

Mojatatu Networks?, Intel?, Warsaw University of Technology?, University of Piraeus*

Motivation

Motivation

Goal: Grow Network Programmability ecosystem

e Datapath definition using P4
o Linux kernel native P4 implementation
o Mundane developer knowledge automated into compiler
m knowledge shift to system (and P4) from HTA kernel skills
m Zero upstream effort
e Same interfaces for either s/ware or h/ware datapaths
o TC offload functionality

Motivation

e Why P4?
O Only open/existing standardized (with h/w) language for describing datapaths

O Commoditization happening with native P4 support on xPUS (Intel and AMD)
m Intel Mev support in progress

O Large consumers of NICs require at minimal P4 for datapath behavioral
description if not implementation

B EgMSDASH
O To Each, Their Itch
B Conway's Law: Organizations model their datapath based on their needs

B Ossification challenges: It's not just about traditional TCP/IP anymore

Motivation

e Why Linux Kernel?

o Mother of all networking infrastructure
m If it beeps and/or has LEDs and maybe emits smoke it is more than likely
running Linux

o Singular API for offloads (via vendor driver)
o Reuse existing TC interface
m Consistent regardless of deployment being SW or HW

P4TC Workflow And
Runtime Architecture

Introduction to P4TC

e TC based kernel-native P4 implementation

e Learn from previous experiences (tc flower, u32, switchdeyv, etc) and scale
o Kernel independence
o Control plane transaction rate and latency
e P4 Architecture Independence
o Currently PNA with some extra “constructs”
m Not hard to add other architectures
m This is about progressing network programmability in addition to expanding P4 reach
e \endor Independent interfacing

o No need to deal with multiple vendor abstraction transformations (and multiple indirections)
o No need for userspace punting infrastructure (popularized by Cumulus)

P4TC: Building On TC Offload

e Datapath definition using P4 cuthol

o Generate the datapath for both s/w and vendor h/w

m Functional equivalence between sw and hw \
) . .) Input=X TC-P4 output=Y
e P4 Linux kernel-native implementation i L:{>
o Kernel TC-based software datapath and Kernel-based HW datapath offload
m Understood Infra tooling which already has deployments H

o Seamless software and hardware symbiosis

o Functional equivalence whether offloading or s/w datapaths ,__“ [&
m Bare Metal, VMs, or Containers
o ldeal for datapath specification
m testin s/w container, VM, etc) then offload when hardware is available
>

output:Y[

P4TC Software Datapath Workflow

P4 Target/arch
constraints

Program

P4 Compiler
Frontend
+ Core

=)

Backend

P4ATC

<L

/ ebpf program \

P4 control

metadata

parser

Clang compiler
with ebpf

backend

= _/

7

P4TC

.| Introspection

info

(o
P4TC

pipeline

P4TC

Tables

PATC

Actions

P4TC

> Externs

e

~

saje[dwia) 1ose weibold vd

Load Program via
bpf system call

via Netlink

Load P4TC Program

7

V4

Kernel

Hardware

Generated

1.
2.
3.

P4TC Template (Loaded via generated) script
P4TC Introspection json (used by CP)
eBPF s/w datapath (at tc and/or xdp level)
*Per packet execution engine
(compiled and loaded when instantiating)

P4TC Workflow With HW offload

Target/iarch
Program constraints

_ PATC
P?:.S)?‘rtr;ﬁlclier 1_l> PATC » Introspection
Backend info
+ Core
N/ e

/ ebpf program \ PA4ATC .E

P4 control pipeline o

parser o

metadata PATC =2

Tables g

BVenkdord Clang compiler PATC &
backend o

PATC =

wry/ > Externs %

n

Load Prog+ \ /
metadata ij b
USi["Q Load Program via Load P4A4TC Program
devlink bpf system call via Netlink
N Kernel

P4 program hardware
abstraction Hardware

HW offload path also generates:
Binary hardware blob

(@)
(@)

Compatible with vendor hardware
Loaded via firmware upload mechanisms

P4TC Runtime S/w Datapath

p4tc introspection
(json) (generated)

TC Infrastructure
tc ebpf code €----1 [

PATC

(generated) P4 runtime

Netlink (obj
CRUDXPS)

kfunc (objltable

CRUDXPS)
XDP code ‘ """""""

Recirculatef objects G
Resubmit | | |EGEERNCUE
etc)

(generated) ‘

Driver

Hardware

eBPF serves as per packet exec engine

o Parser, control block and deparser
P4 objects that require control state reside
in TC domain (attached to netns)

o Actions, externs, pipeline, tables and
their attributes (default hit/miss
actions, etc)

o Kfunc to access them from ebpf
when needed

P4TC Datapath With HW offload

p4tc introspection
(json) (generated)

TC Infrastructure | P4TC Netlihk (obj
tc ebpf code €----7 [-
(generated) P4 runtime
A . objects
A R;g!ﬁ;ﬁ:f (tables, externs,
etc)
kfunc (obj/table |
CRUDXPS) !)
XDP code €------------- Driver P4 runtime
(generated) < objects (tables,

Hardware Hardware P4

externs, etc

generated

Control Plane Integration

Control Plane Runtime CRUDXPS Interface

Netlink header:
Verb=CRUD +
(Implicit S+P)
e.g. PAOBJCREATE

P4TC specific header
Noun= path/to/P4TC
Object
e.g. prog/tableentry

Object Specific
Path extension
(PATC_PATH)
Object Specific
Parameters
(PATC_PARAMS)

/N

N/
VAN

N
VAN

N

Netlink with all benefits
Commands:
P40BJ CREATE
READ,UPDATE
DELETE

Introduced by PATC
Identifies higher bit of path
PipelinelD+ObjectlD

ObjectiD=P4TC_OBJ_TABLE

PATC Object Specific
further hierarchy of object
path (if needed) +
Object specific
attributes/data

Goal: Very High throughput and Low Latency interface

<VERB> <NOUN [OPTIONAL DATA]>+

#Read a single Table entry
tc p4ctrl - myprog/table/control1/mytable ip/dstAddr 1.1.1.1/32 prio 16

#Read/Dump a whole Table
tc p4ctrl - myprog/table/control1/mytable

#create a single table entry
tc p4ctrl Gréate myprog/table/control1/mytable ip/dstAddr 1.1.1.1/32 prio 16 \
action myprog/control1/drop

#create many entries

tc p4ctrl Gréate myprog/table/control1/mytable \
entry ip/dstAddr 10.10.10.0/24 prio 16 action myprog/control1/drop \
entry ip/dstAddr 1.1.1.1/32 prio 32 action myprog/control1/drop \
entry ip/dstAddr 8.8.8.8/32 prio 64 action myprog/control1/drop

P4TC Control API| Abstraction

‘compiled/integrated generic

CRUDSP
Create(path/to/object, DATA)+
Read(path/to/object)
Update(path/to/object, DATA)+
Delete(path/to/object)
Subscribe(path/to/object, filter)
Publish(path/to/object, DATA)+

PATC Netlink
Datapath: HW + SW

P4 introspection

Interface Goals:

myapp
E3E G e

e High performance 1M/s + transactions
o all the way to HW
e Interface with standard linux tooling (tc)
e Modernized Control approach to handle
incremental operations

Performance

Some S/Ware Performance Numbers

Simple |13 forwarding app
e Data path - Intel Cascade Lake CPU, NVIDIA 25Gbps CX6 card:

o 64 byte packets achieved 10M packets per core and 35M on 6 cores

e Control path - VM on AMD Ryzen 4800H (4 allocated CPUs):
o “Worst Case” implies action params were allocated and “Best case” implies actions are
preallocated

o Test case adds 1M entries as fast as possible
m Best case 641k entries per second on 1 core
m Worst case 463k entries per second on 1 core
m Best case on 4 cores 1.78M entries per second
m Worst case on 4 cores 1.64M entries per second

Challenges And
Opportunities

Some Challenges And Opportunities (1)

e Kernel Challenges

o Assumptions of statically defined objects like P4 match actions

m Introduced templating DSL to teach the kernel how to manifest a P4 pipeline
o eBPF non-turing completeness

m Used kfuncs
o Social challenges in upstream process

m Scriptable Version 1 met huge resistance from the eBPF folks

e Took us 10 months of multiple people effort to convert to eBPF

Some Challenges And Opportunities (2)

P4 not well suited for defining control constructs
o We worked around things by introducing annotations

e P4 constructs being hardware biased

o Eg deparser emit centres around headers vs payload splitting
m Ok for HW. SW has the full payload and dont need to emit headers when no header edit

e P4 Const definitions for tables and default actions to make them read-only

o Opportunity: We extended to allow for a more refined approach for runtime objects
m “‘CRUDXSP” Permissions to describe what the control plane or datapath is allowed to do

e Externs
o P4 provides signature definitions for externs
o Work the same way from a control plane perspective as any other object using annotations
o User defined custom externs can be written as kernel modules
m C or Rust, and interfaced with generated kfuncs from eBPF
m Simple custom externs dont require any code

Future Work And Status

Ongoing and Future work

Ongoing work

o Improvement and stabilization of generated code

m \We may be missing some missing features

More refinement of externs

Generating datapath test cases using p4testgen

Generating of control plane test cases
Add other P4 architectures

m Should not require kernel changes
Future work

o Go beyond P4: experiment then push for P4 standardization
o Teach or build a new compiler to generate “distributed pipelines”

O O O O

Status

e Code has been ready for some time, most effort is spent juggling with

upstream folks!

o Sent V9 last week
m Kernel: https://github.com/p4tc-dev/linux-p4tc-pub
m Iproute2: https://qgithub.com/p4tc-dev/iproute2-p4tc-pub

e Compiler: https://github.com/p4lang/p4c/tree/main/backends/tc
e \Vagrant Tutorial Link
o https://qithub.com/p4tc-dev/p4tc-tutorial-pub/tree/main

e Examples link
o https://qithub.com/p4tc-dev/pdtc-examples-pub.git

e Good central link:
o https://www.p4tc.dev

https://github.com/p4tc-dev/linux-p4tc-pub
https://github.com/p4tc-dev/iproute2-p4tc-pub
https://github.com/p4lang/p4c/tree/main/backends/tc
https://github.com/p4tc-dev/p4tc-tutorial-pub/tree/main
https://github.com/p4tc-dev/P4TC-examples-pub.git
https://www.p4tc.dev

Small Demo

References

ok wh =

10.
11.
12.

https://netdevconf.info/0x17/sessions/talk/integrating-ebpf-into-the-p4tc-datapath.html
https://netdevconf.info/0x16/sessions/talk/your-network-datapath-will-be-p4-scripted.html
https://netdevconf.info/0x16/sessions/workshop/p4tc-workshop.html
https://github.com/p4tc-dev/docs/blob/main/p4-conference-2023/2023P4\WorkshopP4TC.pdf
https://qithub.com/p4tc-dev/docs/blob/main/why-p4tc.md#historical-perspective-for-p4tc
https://2023p4workshop.sched.com/event/1KsAe/p4tc-linux-kernel-p4-implementation-approa
ches-and-evaluation
https://github.com/p4tc-dev/docs/blob/main/why-p4tc.md#so-why-p4-and-how-does-p4-help-h
ere

https://qithub.com/p4lang/p4c/tree/main/backends/tc

https://p4.org/
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
https://www.amd.com/en/accelerators/pensando

https://github.com/sonic-net/DASH/tree/main

https://netdevconf.info/0x17/sessions/talk/integrating-ebpf-into-the-p4tc-datapath.html
https://netdevconf.info/0x16/sessions/talk/your-network-datapath-will-be-p4-scripted.html
https://netdevconf.info/0x16/sessions/workshop/p4tc-workshop.html
https://github.com/p4tc-dev/docs/blob/main/p4-conference-2023/2023P4WorkshopP4TC.pdf
https://github.com/p4tc-dev/docs/blob/main/why-p4tc.md#historical-perspective-for-p4tc
https://2023p4workshop.sched.com/event/1KsAe/p4tc-linux-kernel-p4-implementation-approaches-and-evaluation
https://2023p4workshop.sched.com/event/1KsAe/p4tc-linux-kernel-p4-implementation-approaches-and-evaluation
https://github.com/p4tc-dev/docs/blob/main/why-p4tc.md#so-why-p4-and-how-does-p4-help-here
https://github.com/p4tc-dev/docs/blob/main/why-p4tc.md#so-why-p4-and-how-does-p4-help-here
https://github.com/p4lang/p4c/tree/main/backends/tc
https://p4.org/
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
https://www.amd.com/en/accelerators/pensando
https://github.com/sonic-net/DASH/tree/main

