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Motivation

Goal: Grow Network Programmability ecosystem

e Datapath definition using P4
o Linux kernel native P4 implementation
o Mundane developer knowledge automated into compiler
m knowledge shift to system (and P4) from HTA kernel skills
m Zero upstream effort
e Same interfaces for either s/ware or h/ware datapaths
o TC offload functionality



Motivation

e Why P4?
O  Only open/existing standardized (with h/w) language for describing datapaths

O Commoditization happening with native P4 support on xPUS (Intel and AMD)
m Intel Mev support in progress

O Large consumers of NICs require at minimal P4 for datapath behavioral
description if not implementation

B EgMSDASH
O To Each, Their Itch
B Conway's Law: Organizations model their datapath based on their needs

B Ossification challenges: It's not just about traditional TCP/IP anymore



Motivation

e Why Linux Kernel?

o Mother of all networking infrastructure
m If it beeps and/or has LEDs and maybe emits smoke it is more than likely
running Linux

o Singular API for offloads (via vendor driver)
o Reuse existing TC interface
m Consistent regardless of deployment being SW or HW



P4TC Workflow And
Runtime Architecture



Introduction to P4TC

e TC based kernel-native P4 implementation

e Learn from previous experiences (tc flower, u32, switchdeyv, etc) and scale
o Kernel independence
o Control plane transaction rate and latency
e P4 Architecture Independence
o Currently PNA with some extra “constructs”
m Not hard to add other architectures
m This is about progressing network programmability in addition to expanding P4 reach
e \endor Independent interfacing

o No need to deal with multiple vendor abstraction transformations (and multiple indirections)
o No need for userspace punting infrastructure (popularized by Cumulus)



P4TC: Building On TC Offload

e Datapath definition using P4 cuthol

o Generate the datapath for both s/w and vendor h/w

m Functional equivalence between sw and hw \
) . . ) Input=X TC-P4 output=Y
e P4 Linux kernel-native implementation i L:{>
o Kernel TC-based software datapath and Kernel-based HW datapath offload
m Understood Infra tooling which already has deployments H

o Seamless software and hardware symbiosis

o  Functional equivalence whether offloading or s/w datapaths ,__“ [ &
m Bare Metal, VMs, or Containers
o ldeal for datapath specification
m testin s/w container, VM, etc) then offload when hardware is available
>

output:Y[




P4TC Software Datapath Workflow
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P4TC Workflow With HW offload
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P4TC Runtime S/w Datapath

p4tc introspection
(json) (generated)

TC Infrastructure
tc ebpf code €----1 [

PATC

(generated) P4 runtime

Netlink (obj
CRUDXPS)

kfunc (objltable

CRUDXPS)
XDP code ‘ """""""

Recirculatef objects G
Resubmit | | |EGEERNCUE
etc)

(generated) ‘

Driver

Hardware

eBPF serves as per packet exec engine

o Parser, control block and deparser
P4 objects that require control state reside
in TC domain (attached to netns)

o Actions, externs, pipeline, tables and
their attributes (default hit/miss
actions, etc)

o Kfunc to access them from ebpf
when needed



P4TC Datapath With HW offload

p4tc introspection
(json) (generated)

TC Infrastructure | P4TC Netlihk (obj
tc ebpf code €----7 [ -
(generated) P4 runtime
A . objects
A R;g!ﬁ;ﬁ:f (tables, externs,
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kfunc (obj/table |
CRUDXPS) ! )
XDP code €------------- Driver P4 runtime
(generated) < objects (tables,

Hardware Hardware P4

externs, etc

generated




Control Plane Integration



Control Plane Runtime CRUDXPS Interface

Netlink header:
Verb=CRUD +
(Implicit S+P)
e.g. PAOBJCREATE

P4TC specific header
Noun= path/to/P4TC
Object
e.g. prog/tableentry

Object Specific
Path extension
(PATC_PATH)
Object Specific
Parameters
(PATC_PARAMS)

/N

N/
VAN

N
VAN

N

Netlink with all benefits
Commands:
P40BJ CREATE
READ,UPDATE
DELETE

Introduced by PATC
Identifies higher bit of path
PipelinelD+ObjectlD

ObjectiD=P4TC_OBJ_TABLE

PATC Object Specific
further hierarchy of object
path (if needed) +
Object specific
attributes/data

Goal: Very High throughput and Low Latency interface

<VERB> <NOUN [OPTIONAL DATA]>+

#Read a single Table entry
tc p4ctrl - myprog/table/control1/mytable ip/dstAddr 1.1.1.1/32 prio 16

#Read/Dump a whole Table
tc p4ctrl - myprog/table/control1/mytable

#create a single table entry
tc p4ctrl Gréate myprog/table/control1/mytable ip/dstAddr 1.1.1.1/32 prio 16 \
action myprog/control1/drop

#create many entries

tc p4ctrl Gréate myprog/table/control1/mytable \
entry ip/dstAddr 10.10.10.0/24 prio 16 action myprog/control1/drop \
entry ip/dstAddr 1.1.1.1/32 prio 32 action myprog/control1/drop \
entry ip/dstAddr 8.8.8.8/32 prio 64 action myprog/control1/drop



P4TC Control API| Abstraction

‘compiled/integrated generic

CRUDSP
Create(path/to/object, DATA)+
Read(path/to/object)
Update(path/to/object, DATA)+
Delete(path/to/object)
Subscribe(path/to/object, filter)
Publish(path/to/object, DATA)+

PATC Netlink
Datapath: HW + SW

P4 introspection

Interface Goals:

myapp
E3E G e

e High performance 1M/s + transactions
o all the way to HW
e Interface with standard linux tooling (tc)
e Modernized Control approach to handle
incremental operations



Performance



Some S/Ware Performance Numbers

Simple |13 forwarding app
e Data path - Intel Cascade Lake CPU, NVIDIA 25Gbps CX6 card:

o 64 byte packets achieved 10M packets per core and 35M on 6 cores

e Control path - VM on AMD Ryzen 4800H (4 allocated CPUs):
o “Worst Case” implies action params were allocated and “Best case” implies actions are
preallocated

o Test case adds 1M entries as fast as possible
m Best case 641k entries per second on 1 core
m Worst case 463k entries per second on 1 core
m Best case on 4 cores 1.78M entries per second
m Worst case on 4 cores 1.64M entries per second



Challenges And
Opportunities



Some Challenges And Opportunities (1)

e Kernel Challenges

o Assumptions of statically defined objects like P4 match actions

m Introduced templating DSL to teach the kernel how to manifest a P4 pipeline
o eBPF non-turing completeness

m Used kfuncs
o Social challenges in upstream process

m Scriptable Version 1 met huge resistance from the eBPF folks

e Took us 10 months of multiple people effort to convert to eBPF



Some Challenges And Opportunities (2)

P4 not well suited for defining control constructs
o We worked around things by introducing annotations

e P4 constructs being hardware biased

o Eg deparser emit centres around headers vs payload splitting
m Ok for HW. SW has the full payload and dont need to emit headers when no header edit

e P4 Const definitions for tables and default actions to make them read-only

o  Opportunity: We extended to allow for a more refined approach for runtime objects
m “‘CRUDXSP” Permissions to describe what the control plane or datapath is allowed to do

e Externs
o P4 provides signature definitions for externs
o Work the same way from a control plane perspective as any other object using annotations
o User defined custom externs can be written as kernel modules
m C or Rust, and interfaced with generated kfuncs from eBPF
m Simple custom externs dont require any code




Future Work And Status



Ongoing and Future work

Ongoing work

o Improvement and stabilization of generated code

m \We may be missing some missing features

More refinement of externs

Generating datapath test cases using p4testgen

Generating of control plane test cases
Add other P4 architectures

m Should not require kernel changes
Future work

o Go beyond P4: experiment then push for P4 standardization
o Teach or build a new compiler to generate “distributed pipelines”

O O O O



Status

e Code has been ready for some time, most effort is spent juggling with

upstream folks!

o Sent V9 last week
m Kernel: https://github.com/p4tc-dev/linux-p4tc-pub
m Iproute2: https://qgithub.com/p4tc-dev/iproute2-p4tc-pub

e Compiler: https://github.com/p4lang/p4c/tree/main/backends/tc
e \Vagrant Tutorial Link
o https://qithub.com/p4tc-dev/p4tc-tutorial-pub/tree/main

e Examples link
o https://qithub.com/p4tc-dev/pdtc-examples-pub.git

e Good central link:
o https://www.p4tc.dev



https://github.com/p4tc-dev/linux-p4tc-pub
https://github.com/p4tc-dev/iproute2-p4tc-pub
https://github.com/p4lang/p4c/tree/main/backends/tc
https://github.com/p4tc-dev/p4tc-tutorial-pub/tree/main
https://github.com/p4tc-dev/P4TC-examples-pub.git
https://www.p4tc.dev

Small Demo
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