
Introducing P4TC
A P4 Implementation on Linux Kernel

Traffic Control
Euro P4 workshop (Dec 08/2023)

Paris, France

Jamal Hadi Salim1, Deb Chatterjee2, Victor Nogueira1, Pedro Tammela1, Tomasz Osinski2, 3, Evangelos Haleplidis1, 4,
Sosutha Sethuramapandian2, Balachandher Sambasivam2, Usha Gupta2, Komal Jain2

Mojatatu Networks1, Intel2, Warsaw University of Technology3, University of Piraeus4

Motivation

Motivation

Goal: Grow Network Programmability ecosystem
● Datapath definition using P4

○ Linux kernel native P4 implementation
○ Mundane developer knowledge automated into compiler

■ knowledge shift to system (and P4) from HTA kernel skills
■ Zero upstream effort

● Same interfaces for either s/ware or h/ware datapaths
○ TC offload functionality

Motivation
● Why P4?

○ Only open/existing standardized (with h/w) language for describing datapaths

○ Commoditization happening with native P4 support on xPUS (Intel and AMD)
■ Intel Mev support in progress

○ Large consumers of NICs require at minimal P4 for datapath behavioral
description if not implementation
■ Eg MS DASH

○ To Each, Their Itch

■ Conway's Law: Organizations model their datapath based on their needs

■ Ossification challenges: It's not just about traditional TCP/IP anymore

Motivation
● Why Linux Kernel?

○ Mother of all networking infrastructure
■ If it beeps and/or has LEDs and maybe emits smoke it is more than likely

running Linux
○ Singular API for offloads (via vendor driver)
○ Reuse existing TC interface

■ Consistent regardless of deployment being SW or HW

P4TC Workflow And
Runtime Architecture

Introduction to P4TC
● TC based kernel-native P4 implementation
● Learn from previous experiences (tc flower, u32, switchdev, etc) and scale

○ Kernel independence
○ Control plane transaction rate and latency

● P4 Architecture Independence
○ Currently PNA with some extra “constructs”

■ Not hard to add other architectures
■ This is about progressing network programmability in addition to expanding P4 reach

● Vendor Independent interfacing
○ No need to deal with multiple vendor abstraction transformations (and multiple indirections)
○ No need for userspace punting infrastructure (popularized by Cumulus)

P4TC: Building On TC Offload
● Datapath definition using P4

○ Generate the datapath for both s/w and vendor h/w
■ Functional equivalence between sw and hw

● P4 Linux kernel-native implementation
○ Kernel TC-based software datapath and Kernel-based HW datapath offload

■ Understood Infra tooling which already has deployments
○ Seamless software and hardware symbiosis
○ Functional equivalence whether offloading or s/w datapaths

■ Bare Metal, VMs, or Containers
○ Ideal for datapath specification

■ test in s/w container, VM, etc) then offload when hardware is available

P4TC Software Datapath Workflow

Generated
1. P4TC Template (Loaded via generated) script
2. P4TC Introspection json (used by CP)
3. eBPF s/w datapath (at tc and/or xdp level)

*Per packet execution engine
(compiled and loaded when instantiating)

P4TC Workflow With HW offload

HW offload path also generates:
● Binary hardware blob

○ Compatible with vendor hardware
○ Loaded via firmware upload mechanisms

P4TC Runtime S/w Datapath

● eBPF serves as per packet exec engine
○ Parser, control block and deparser

● P4 objects that require control state reside
in TC domain (attached to netns)

○ Actions, externs, pipeline, tables and
their attributes (default hit/miss
actions, etc)

○ Kfunc to access them from ebpf
when needed

P4TC Datapath With HW offload

Control Plane Integration

Control Plane Runtime CRUDXPS Interface

14

Goal: Very High throughput and Low Latency interface

#create a single table entry
tc p4ctrl create myprog/table/control1/mytable ip/dstAddr 1.1.1.1/32 prio 16 \
action myprog/control1/drop

<VERB> <NOUN [OPTIONAL DATA]>+

#Read a single Table entry
tc p4ctrl get myprog/table/control1/mytable ip/dstAddr 1.1.1.1/32 prio 16

#Read/Dump a whole Table
tc p4ctrl get myprog/table/control1/mytable

#create many entries
tc p4ctrl create myprog/table/control1/mytable \
 entry ip/dstAddr 10.10.10.0/24 prio 16 action myprog/control1/drop \
 entry ip/dstAddr 1.1.1.1/32 prio 32 action myprog/control1/drop \
 entry ip/dstAddr 8.8.8.8/32 prio 64 action myprog/control1/drop

P4TC Control API Abstraction

Interface Goals:
● High performance 1M/s + transactions

○ all the way to HW
● Interface with standard linux tooling (tc)
● Modernized Control approach to handle

incremental operations

Performance

Some S/Ware Performance Numbers
Simple l3 forwarding app

● Data path - Intel Cascade Lake CPU, NVIDIA 25Gbps CX6 card:
○ 64 byte packets achieved 10M packets per core and 35M on 6 cores

● Control path - VM on AMD Ryzen 4800H (4 allocated CPUs):
○ “Worst Case” implies action params were allocated and “Best case” implies actions are

preallocated
○ Test case adds 1M entries as fast as possible

■ Best case 641k entries per second on 1 core
■ Worst case 463k entries per second on 1 core
■ Best case on 4 cores 1.78M entries per second
■ Worst case on 4 cores 1.64M entries per second

Challenges And
Opportunities

Some Challenges And Opportunities (1)
● Kernel Challenges

○ Assumptions of statically defined objects like P4 match actions
■ Introduced templating DSL to teach the kernel how to manifest a P4 pipeline

○ eBPF non-turing completeness
■ Used kfuncs

○ Social challenges in upstream process
■ Scriptable Version 1 met huge resistance from the eBPF folks

● Took us 10 months of multiple people effort to convert to eBPF

Some Challenges And Opportunities (2)
● P4 not well suited for defining control constructs

○ We worked around things by introducing annotations
● P4 constructs being hardware biased

○ Eg deparser emit centres around headers vs payload splitting
■ Ok for HW. SW has the full payload and dont need to emit headers when no header edit

● P4 Const definitions for tables and default actions to make them read-only
○ Opportunity: We extended to allow for a more refined approach for runtime objects

■ “CRUDXSP” Permissions to describe what the control plane or datapath is allowed to do
● Externs

○ P4 provides signature definitions for externs
○ Work the same way from a control plane perspective as any other object using annotations
○ User defined custom externs can be written as kernel modules

■ C or Rust, and interfaced with generated kfuncs from eBPF
■ Simple custom externs dont require any code

 Future Work And Status

Ongoing and Future work
● Ongoing work

○ Improvement and stabilization of generated code
■ We may be missing some missing features

○ More refinement of externs
○ Generating datapath test cases using p4testgen
○ Generating of control plane test cases
○ Add other P4 architectures

■ Should not require kernel changes
● Future work

○ Go beyond P4: experiment then push for P4 standardization
○ Teach or build a new compiler to generate “distributed pipelines”

Status
● Code has been ready for some time, most effort is spent juggling with

upstream folks!
○ Sent V9 last week

■ Kernel: https://github.com/p4tc-dev/linux-p4tc-pub
■ Iproute2: https://github.com/p4tc-dev/iproute2-p4tc-pub

● Compiler: https://github.com/p4lang/p4c/tree/main/backends/tc
● Vagrant Tutorial Link

○ https://github.com/p4tc-dev/p4tc-tutorial-pub/tree/main
● Examples link

○ https://github.com/p4tc-dev/p4tc-examples-pub.git
● Good central link:

○ https://www.p4tc.dev

https://github.com/p4tc-dev/linux-p4tc-pub
https://github.com/p4tc-dev/iproute2-p4tc-pub
https://github.com/p4lang/p4c/tree/main/backends/tc
https://github.com/p4tc-dev/p4tc-tutorial-pub/tree/main
https://github.com/p4tc-dev/P4TC-examples-pub.git
https://www.p4tc.dev

Small Demo

References
1. https://netdevconf.info/0x17/sessions/talk/integrating-ebpf-into-the-p4tc-datapath.html
2. https://netdevconf.info/0x16/sessions/talk/your-network-datapath-will-be-p4-scripted.html
3. https://netdevconf.info/0x16/sessions/workshop/p4tc-workshop.html
4. https://github.com/p4tc-dev/docs/blob/main/p4-conference-2023/2023P4WorkshopP4TC.pdf
5. https://github.com/p4tc-dev/docs/blob/main/why-p4tc.md#historical-perspective-for-p4tc
6. https://2023p4workshop.sched.com/event/1KsAe/p4tc-linux-kernel-p4-implementation-approa

ches-and-evaluation
7. https://github.com/p4tc-dev/docs/blob/main/why-p4tc.md#so-why-p4-and-how-does-p4-help-h

ere
8. https://github.com/p4lang/p4c/tree/main/backends/tc
9. https://p4.org/

10. https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
11. https://www.amd.com/en/accelerators/pensando
12. https://github.com/sonic-net/DASH/tree/main

https://netdevconf.info/0x17/sessions/talk/integrating-ebpf-into-the-p4tc-datapath.html
https://netdevconf.info/0x16/sessions/talk/your-network-datapath-will-be-p4-scripted.html
https://netdevconf.info/0x16/sessions/workshop/p4tc-workshop.html
https://github.com/p4tc-dev/docs/blob/main/p4-conference-2023/2023P4WorkshopP4TC.pdf
https://github.com/p4tc-dev/docs/blob/main/why-p4tc.md#historical-perspective-for-p4tc
https://2023p4workshop.sched.com/event/1KsAe/p4tc-linux-kernel-p4-implementation-approaches-and-evaluation
https://2023p4workshop.sched.com/event/1KsAe/p4tc-linux-kernel-p4-implementation-approaches-and-evaluation
https://github.com/p4tc-dev/docs/blob/main/why-p4tc.md#so-why-p4-and-how-does-p4-help-here
https://github.com/p4tc-dev/docs/blob/main/why-p4tc.md#so-why-p4-and-how-does-p4-help-here
https://github.com/p4lang/p4c/tree/main/backends/tc
https://p4.org/
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
https://www.amd.com/en/accelerators/pensando
https://github.com/sonic-net/DASH/tree/main

