
A P4-Based Content-Aware Approach to
Mitigate Slow HTTP POST Attacks

Chih-Yu Hsieh,
Hong-Yen Chen,
Shan-Hsiang Shen,
Chen-Hsiang Hung,
Tsung-Nan Lin

EuroP4 - December 9, 2022

Agenda

● Introduction

● Proposed Method

● Experiments and Results

● Conclusion

2

Slow HTTP DDoS Attacks

Slow HTTP DDoS attacks disturb services by occupying server threads with

● HTTP headers: slowloris / slow header
● HTTP body: slow POST / slow body / RUDY

Sending body simulates realistic file upload

3

slowloris slow POST

segment HTTP header HTTP body

expected size small large

POST /posts HTTP/1.1
Host: 10.0.1.1
User-Agent: Mozilla/4.0
Content-Length: 7
Content-Type: application/x-www-form-urlencoded

foo=bar

start-line
headers

body

HTTP request example

Challenge of Detection

● How to distinguish attackers from clients correctly in various network activities?

○ Viewing websites
○ Uploading photos / videos
○ Filling forms
○ Slow HTTP attack

● Existing works
○ timeout methods [1-3]
○ credibility method [4]

● False positives make legitimate users suffer from denial-of-service

4

[1] J. Park, K. Iwai, H. Tanaka, and T. Kurokawa, “Analysis of slow read dos attack and countermeasures on web servers,” International Journal of Cyber-Security and
Digital Forensics, vol. 4, no. 2, pp. 339–353, 2015.
[2] T. Hirakawa, K. Ogura, B. B. Bista, and T. Takata, “A defense method against distributed slow http dos attack,” in 2016 19th International Conference on
Network-Based Information Systems (NBiS), 2016, pp. 152–158.
[3] K. Hong, Y. Kim, H. Choi, and J. Park, “Sdn-assisted slow http ddos attack defense method,” IEEE Communications Letters, vol. 22, no. 4, pp. 688–691, 2018.
[4] Y.-C. Wang and R.-X. Ye, “Credibility-based countermeasure against slow http dos attacks by using sdn,” in 2021 IEEE 11th Annual Computing and Communication
Workshop and Conference (CCWC), 2021, pp. 0890–0895.

Timeout-based Defense Mechanism

Files are corrupt because the user cannot finish uploading within the timeout.

5

Size: 300 MB
Upload Time: 4 min

10 Mbps

Size: 287.5 MB
Upload Time: …

10 Mbps

Size: 12.5 MB

blocked by 10
seconds timeout

10 seconds

Credibility-based Defense Mechanism
The file to upload cannot be completed within the specified number of packets

6

Size: 300 MB

#1

blocked by fragmented packets

#2⋯#n
split file into packets

credit = 100

#1#2

credit-1credit-1#3#4⋯#n

credit = 98

#1#100
#101⋯#n

credit = 0
⋯

#102

received size < 6.4 MB

Contribution

Our proposed method, RASP, is an open source1, P4-based content-aware countermeasure.

● High accuracy: overcome the false positive issue by utilizing HTTP information

● Scalable deployment by P4

○ Application-layer headers processing is distributed to switches

○ Quantifies network usage savings

● Demonstrates the ability of P4 to parse variable-length header fields

7

1 https://github.com/doraeric/p4-rasp

https://github.com/doraeric/p4-rasp
https://github.com/doraeric/p4-rasp

8

1. complete

2. short-term

3. long-term

HTTP
requests

GET
requests

other
requests

Server

finish

timeout
of conn

finish
of conn

Client

response codeother
4xx (Failed)

RASP overview

1. complete

2. short-term
finish

timeout
of conn

close new
connection

① client sends
HTTP req

② identify method

③ classify long /
short-term from
headers

④ apply limitations

⑤ punish bad client

⮞ Request: Initial Protection

⮞ Response: Punishment at the End

Method Overview

Initial Protection

● Limitation per client per category

○ complete: none

○ short-term: number of requests is 8, connection time < 10 seconds

○ long-term: number of requests is 4

● Close excess connections and keep old ones.

The user needs to finish old requests first.

9

Punishment at the End

● HTTP status code can indicate whether a request is successful.
○ 2xx: the backend processes the request without error
○ 4xx: the request failed due to client error (malformed / invaild request)

● Punishment is to decrease the number of allowed connections.

10

HTTP/1.1 200 OK
Server: Apache/2.4.25 (Debian)
Content-Type: text/html
...

HTTP/1.1 400 Bad Request
Server: Apache/2.4.25 (Debian)
Content-Type: text/html
...

A good HTTP response. A bad HTTP response.

Implementation
● Control plane

○ manage connection state

● Data plane

○ parse HTTP headers

○ manage the number of open connections with register

○ report to controller with digest messages

11

struct headers_t {
 char_header_t[200] http_buffer;
}

https://github.com/doraeric/p4-rasp

Experiments - Simulation Scenario

We simulate different usage scenarios to verify the robustness of RASP:

1. short GET: slow client viewing websites under a slow header attack
2. long non-GET: clients uploading several photos under a slow POST attack
3. short non-GET: clients uploading GPS locations under a slow POST attack.

We investigate

● the number of successful requests the clients send
● reduction in network usage by adopting P4

Experiment with BMv2

12

1. Slow Header Attack

13

never disconnect attackers

not activate

wait until t=71

mitigate at t=17

Short-term GET clients
under slow header attack

Our proposed RASP
mitigates attacks earlier by
sending TCP RST.

2. POST Photos

14

Long-term non-GET clients
under slow POST attacks

RASP correctly completes
all client requests in time

Method receive bytes complete files
SHDA 43.3 MB 0
CCSA 1.7 MB 0
RASP 129 MB 60

Table. Received files by backend

takes more than 300 seconds

clients disconnected due to timeout

clients blocked due to low credit

finish requests at t = 230

3. Upload GPS Locations

15

Short-term non-GET clients
under slow POST attacks

RASP correctly protects
clients from DDoS attacks.

Table. Received requests by backend

Method # of req success
SHDA 1782 99%
CCSA 300 16.7%
RASP 1800 100%

clients keep waiting

curve raises quickly, becomes DDoS

clients blocked due to low credit

receive all client requests

Network Usage

● Send smaller digests messages than raw packets

○ Raw: between switches and clients, including attackers

○ P4RT: degest messages between switches and controller

● Digest message (P4) compared to raw packets (OpenFlow)

○ Number of packets -> approximately 30%

○ Number of bytes -> 20%

● Larger HTTP body benefit more (exp2, 0.74% / 0.1%)

16

Conclusion

● We propose RASP, a defense mechanism against slow HTTP POST DDoS
attacks. RASP utilizes new information from application-layer headers to
implement more delicate control.

● RASP achieves more accurate detection than that in previous work under
realistic simulations.

● It is implemented on the highly programmable P4, which provides potential
for future development. Other plaintext-based protocols like HTTP, may be
applied in similar approaches.

17

Thank you!

18

Chih-Yu Hsieh
r09921a17@ntu.edu.tw

github.com/doraeric/p4-rasp

https://github.com/doraeric/p4-rasp
https://github.com/doraeric/p4-rasp

