
SD-Fabric Tutorial 1github.com/opennetworkinglab/sdfabric-tutorial

P4 User Plane Function (P4-UPF)
SD-Fabric Tutorial – Part 3

SD-Fabric Tutorial 2github.com/opennetworkinglab/sdfabric-tutorial

Part 3 Agenda

§ P4-UPF architecture and pipeline design

§Hands-on lab
• Configure P4-UPF

• Generate traffic

• Observe GTP-U termination performed by switches

SD-Fabric Tutorial 3github.com/opennetworkinglab/sdfabric-tutorial

Switch-Based P4-UPF
§ Frees up CPU resources
• To be used by edge applications
• UPF data path fully offloaded to switches

§ Addresses Industry 4.0 requirements
• Ultra low latency (<1.5µs) and jitter (<4ns)
• Tbps throughput

§ Tailored for enterprise and IoT use cases
• GTP-U termination (incl. 5G extensions)
• Application filtering (ACL)
• Slicing & QoS
• Usage reporting
• Idle-mode buffering (cloud-native service)

§ INT visibility for SLA validation
• Monitor flows inside GTP-U tunnels
• Support UPF-specific drop reasons Servers

Switch

Edge
App

BESS-UPF

ToR

Edge
App

P4-UPF

Servers

BESS: Berkeley Extensible Software Switch

Radio base
station

Switch-based

CPU-based

SD-Fabric Tutorial 4github.com/opennetworkinglab/sdfabric-tutorial

Distributed UPF Data Path

§ Minimum latency
• Tunnels terminated at the ingress

leaf, without detouring through
additional devices

§ Fast failover
• With paired-ToRs, if one switch fails,

the other can take over as it is
already programmed with the same
rules.

§ Fabric-wide QoS
• packets are classified as soon as

they hit the first leaf. We then use a
custom DSCP-based marking to
enforce the same QoS at each hop.

UPF
data path

Server

ToR

Server

Server

Single ToR

ToR

ToR

Server

Server

Server

Paired ToRs for high availability

Leaf Leaf

Spine Spine

LeafLeaf

Leaf-spine for multi-rack
deployments QoS: Quality of Service

All leaf switches
programmed with the

same UPF rules for
GTP-U termination and
app/QoS classification

Scale

Scale Sc
al

e

Fabric-wide QoS

SD-Fabric Tutorial 5github.com/opennetworkinglab/sdfabric-tutorial

UP4 App
One-Big-UPF abstraction

Trellis Control Apps
Routing, ECMP, MPLS, etc.

Mobile Core Control Plane
(5G SMF)

PFCP

PFCP Agent

P4Runtime

Spine Spine

Leaf Leaf

ONOS – SDN Controller (Highly Available)

Stratum

Stratum Stratum

Stratum

SD-Fabric

P4Runtime & gNMI

UPF
data path

Integration with Mobile Core
Via One-Big-UPF Abstraction

PFCP: Packet Forwarding Control Protocol
(3GPP standard interface)

Allows fabric topology to
scale independently of

mobile core control plane

Switch
(virtual-upf.p4)

SD-Fabric Tutorial 6github.com/opennetworkinglab/sdfabric-tutorial

UP4 App
One-Big-UPF abstraction

Trellis Control Apps
Routing, ECMP, MPLS, etc.

Mobile Core Control Plane
(5G SMF)

PFCP

PFCP Agent

P4Runtime

Switch
(virtual-upf.p4)

Spine Spine

Leaf Leaf

ONOS – SDN Controller (Highly Available)

Stratum

Stratum Stratum

Stratum

P4Runtime & gNMI

Role of UP4 App

p4c-tofino
p4info.txt
tofino.bin

p4c
(front-end only)

p4info.txt
(v1model)

virtual-upf.p4
Defines only UPF
tables, not optimized
for any HW target

(TNA)

fabric.p4
Optimized for Tofino.
Defines tables for UPF,
routing, ECMP, MPLS,
INT, etc.

Translates P4Runtime entries
from virtual-upf.p4 to fabric.p4.

Programs all leaf switches to realize
distributed data path.

UPF
data pathhttps://github.com/omec-project/up4

https://github.com/omec-project/up4

SD-Fabric Tutorial 7github.com/opennetworkinglab/sdfabric-tutorial

Role of PFCP Agent

§ Go-based micro-service
§ Implement complex PFCP protocol

once, for many data paths
§ Main functions:
• PFCP session handling
• UE IP address allocation
• Volume/time-based triggers for Usage

Reporting Rules (URR)
• Etc.

§ Support multiple southbound
protocols via plug-in mechanism

https://github.com/omec-project/upf

https://github.com/omec-project/upf

SD-Fabric Tutorial 8github.com/opennetworkinglab/sdfabric-tutorial

UPF P4 Pipeline Design
With an aside on fabric.p4

SD-Fabric Tutorial 9github.com/opennetworkinglab/sdfabric-tutorial

UP4 Logical Pipeline

Source interfaces
<Outer IP addr>

Sessions
<TEID/IP addr>

Applications
<Inner IP prefix, port range>

Terminations
<Session ID, App ID>

Identifies the UPF logical
interface (N3, N6)

App ID

Session ID

GTP-U
encap/decap

Drop
(app not allowed)

Packet Identifies the application

Identifies the UE

PFCP Agent

UP4 Plug-in

Packet Detection Rule (PDR)
Forwarding Action Rules (FAR)
QoS Enforcement Rules (QER)
Etc…

virtual-upf.p4

P4Runtime table entries

UP4 plug-in validates
and decompose PFCP

entities into P4Runtime
table entries PFCP defines a very flexible

match-action abstraction.
Hard to implement in HW

without knowing pattern of
rules from SMF.

Subset of PFCP capabilities
tailored for enterprise use cases

SD-Fabric Tutorial 10github.com/opennetworkinglab/sdfabric-tutorial

An Aside: Fabric.p4 Design Rationale

Filtering Forwarding Next
VLAN-based port
admission

Forwarding information base
(bridging, IPv4/6 routing, MPLS, etc.)

Apply forwarding actions
(rewrite headers, push/pop VLAN/MPLS, ECMP, multicast, etc.)

ONOS FlowObjective API (Java)
3-stage logical pipeline

Next-ID
Permit/
deny To port(s)

Table
Filtering

tables

Table
Forwarding

tables

Table
Next tables

Table
Egress next

tables

Traffic manager
(replication, buffering)

Ingress pipe Egress pipe

fabric.p4 (Tofino Native Architecture)

Trellis Control Apps

SD-Fabric Tutorial 11github.com/opennetworkinglab/sdfabric-tutorial

Fabric.p4 Tables (Simplified)
In-port + VLAN filtering table

Forwarding classifier

Bridging IPv4 routing MPLS

MulticastHashed
(ECMP)

Next ID mapping

IPv6 routing
(WIP)

ACL

...

Filtering

Forwarding

Next
Next VLAN

Permit with
internal VLAN

Drop

Drop or
punt to CPU (ONOS)

SD-Fabric Tutorial 12github.com/opennetworkinglab/sdfabric-tutorial

Compile-Time Profiles

§ Same P4 program, multiple profiles

§ Choose which capabilities to include via p4c preprocessor flags

Profile name p4c preprocessor flags Description

fabric None Basic fabric profile

fabric-upf -DWITH_UPF With UPF tables

fabric-int -DWITH_INT With Inband-Network Telemetry (INT) spec v0.5

fabric-upf-int -DWITH_UPF -DWITH_INT With both UPF and INT functions

https://github.com/stratumproject/fabric-tna

https://github.com/stratumproject/fabric-tna

SD-Fabric Tutorial 13github.com/opennetworkinglab/sdfabric-tutorial

Next
Egress

UPF Integration with Fabric.p4

Filtering Forwarding Next Traffic manager
(replication, buffering)

Ingress pipe Egress pipe

fabric.p4 (fabric-upf profile)

UPF
Egress

UPF
Ingress

Similar tables to
virtual-upf.p4 but optimized

for Tofino

Routing on modified IP
header (if encap/decap)

Egress counters, etc.

SD-Fabric Tutorial 14github.com/opennetworkinglab/sdfabric-tutorial

P4-UPF Summary

§ Distributed UPF data path

§ Integration with 5G mobile core via:

• PFCP-Agent: multiple southbound plug-ins

• UP4 ONOS app: One-Big-UPF abstraction

§ Two P4 programs:

• Virtual-upf.p4: logical, API data model for UP4

• Fabric.p4: runs on Tofino

§ Idle-mode buffering

§ Slicing & QoS

• Dedicated tutorial session soon

§ INT integration

• Dedicated tutorial sessions soon

§ Further reading:
• docs.sd-fabric.org/master/advanced/p4-upf.html

• R. MacDavid et al. A P4-based 5G User Plane Function,
SOSR 2021

What we talked about What we didn’t talk about

https://docs.sd-fabric.org/master/advanced/p4-upf.html
https://www.cs.princeton.edu/~macdavid/media/up4-sosr21.pdf

SD-Fabric Tutorial 15github.com/opennetworkinglab/sdfabric-tutorial

Exercise 2
GTP-U Tunnel Termination with P4-UPF

SD-Fabric Tutorial 16github.com/opennetworkinglab/sdfabric-tutorial

Exercise 2 Overview

226 227

204 205

172.16.1.99 172.16.4.1

App host (h4)

Base Station (gNodeB)

192.168.0.1

User Equipment (UE)

Same 2x2 leaf-spine fabric as in Exercise 1. We will use
only two hosts: gNodeB (emulated) and app host

leaf1 leaf2

spine1 spine2

SD-Fabric Tutorial 17github.com/opennetworkinglab/sdfabric-tutorial

Exercise 2 Overview

226 227

204 205

172.16.1.99 172.16.4.1

App host (h4)

Base Station (gNodeB)

192.168.0.1

User Equipment (UE)

UPF function distributed on leaf1 and leaf2
(using fabric-upf pipeconf)

leaf1 leaf2

spine1 spine2

fabric-upf fabric-upf

fabric fabric

SD-Fabric Tutorial 18github.com/opennetworkinglab/sdfabric-tutorial

Exercise 2 Overview

226 227

204 205

172.16.1.99 172.16.4.1

App host (h4)

Base Station (gNodeB)

192.168.0.1

User Equipment (UE)

leaf1 leaf2

spine1 spine2

Dst IP: 192.168.0.1 (UE)
Src IP: 172.16.4.1 (app)

SD-Fabric Tutorial 19github.com/opennetworkinglab/sdfabric-tutorial

Exercise 2 Overview

226 227

204 205

172.16.1.99 172.16.4.1

App host (h4)

Base Station (gNodeB)

192.168.0.1

User Equipment (UE)

leaf1 leaf2

spine1 spine2

Dst IP: 192.168.0.1 (UE)
Src IP: 172.16.4.1 (app)

Dst IP: 172.16.1.99 (gNodeB)
Src IP: 172.16.1.254 (UPF)

Performs GTP-U encapsulation

SD-Fabric Tutorial 20github.com/opennetworkinglab/sdfabric-tutorial

UP4 App
One-Big-UPF abstraction

Trellis Control Apps
Routing, ECMP, MPLS, etc.

PFCP Sim

PFCP

PFCP Agent

P4Runtime

Spine 1 Spine 2

Leaf 1 Leaf 2

ONOS

Stratum

Stratum Stratum

Stratum

P4Runtime & gNMI

P4-UPF Workflow

PFCP: Packet Forwarding Control Protocol (3GPP standard interface)

netcfg-up4.json

• Set UPF switches1

pfcp-agent.json

• Set UE subnet
• Set UPF IP address (N3)
• Set UP4 P4Runtime server

2

• PFCP Association
• PFCP Session

Establishment/Modification/Deletion

3

SD-Fabric Tutorial 21github.com/opennetworkinglab/sdfabric-tutorial

PFCP Sim
§ Emulates 5G SMF

§CLI interface to manually set up UE sessions

pfcpsim
(gRPC server)

pfcpctl
(gRPC client)

UPF (PFCP Agent)

PFCP

pfcpctl service associate
pfcpctl session create --ue-pool 192.168.0.0/16 --gnb-addr 172.16.1.99
pfcpctl session modify --ue-pool 192.168.0.0/16 --gnb-addr 172.16.1.99
…

Handles keepalives, session
bookkeeping, etc.

gRPC

https://github.com/omec-project/pfcpsim

https://github.com/omec-project/pfcpsim

SD-Fabric Tutorial 22github.com/opennetworkinglab/sdfabric-tutorial

Environment Overview
pfcp-agent Docker container pfcp-sim Docker container

Mininet script
topo.py

mn-stratum Docker container

sdfabric-onos Docker container

PFCP
Agent

PFCP
Sim

PFCP

P4
RT

ONOS
single instance

LLDP
Provider

(link discovery)

Host
Provider

(host discovery)

Trellis
Control
(underlay

forwarding)

stratum_bmv2
stratum_bmv2

stratum_bmv2

BMv2/Stratum Driver

P4RT, gNMI

IPv4 hosts
(Linux net

namespace)

UP4
(5G UPF)

INT
(INT Watchlist)

REGISTER

pipeconf

make start
make start-upf
make netcfg
make onos-cli
make onos-log
make mn-cli
make mn-log
make mn-pcap
make pfcp-log

make deps

CLI

Log

CLI

Log

PCAP

Log

netcfg.json

REST

Useful Commands

SD-Fabric Tutorial 23github.com/opennetworkinglab/sdfabric-tutorial

Exercise 2 Steps

§Modify configuration files

§ Start PFCP Agent
§Use pfcpctl to set up UE session

§Use Python scripts to generate and sniff traffic
§Verify that switch is performing GTP-U encapsulation as expected

SD-Fabric Tutorial 24github.com/opennetworkinglab/sdfabric-tutorial

Exercise 2: Get Started

§Open lab README on GitHub
• http://github.com/opennetworkinglab/sdfabric-tutorial

§Or open in text editor
• sdfabric-tutorial/README.md

• sdfabric-tutorial/EXERCISE-2.md

§ Solution
• sdfabric-tutorial/solution

SD-Fabric Tutorial 25github.com/opennetworkinglab/sdfabric-tutorial

That’s All For Now!

§ Part 1 – Introduction to SD-Fabric: motivation, architecture, use cases

§ Part 2 – Basics & Configuration + hands-on lab

§ Part 3 – P4 User Plane Function (UPF) + hands-on lab

§ Part 4 – In-band Network Telemetry (INT)

§ Part 5 – Extending SD-Fabric

§ Part 6 – Slicing & QoS

§ Part 7 – Advanced Connectivity

§ And more…

More sessions and labs on the way!
Make sure to watch the GitHub repo

github.com/opennetworkinglab/sdfabric-tutorial

SD-Fabric Tutorial 27github.com/opennetworkinglab/sdfabric-tutorial

Notices & Disclaimers

§ Intel technologies may require enabled hardware, software or service activation.

§ No product or component can be absolutely secure.

§ Your costs and results may vary.

§ © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks
of Intel Corporation or its subsidiaries. Other names and brands may be
claimed as the property of others.

28

