
P4 Designer
Pratap Pellakuru, Sharmila 
S, Michael Orr, Bob Beard

Intel



• P4 popularity is growing and there is a demand to 
extend support to multiple architectures

• There is not necessarily a 1-1 mapping between P4 
elements and hardware blocks

• BIG gap between being a “P4 Programmer” and a “P4 
Programmer for a particular product” 
• Developer needs to know inner workings of hardware at 

the detailed/nuanced level
• Developer must tell the compiler how to map P4 to 

hardware blocks

• RESULT: Even a knowledgeable P4 programmer with 
experience in another packet-processor has a 
significant learning period to become productive for 
another product

• Customer Experience: Even after the learning period, 
confidence levels are low while deploying P4

Writing P4 requires 
deep understanding of 
hardware architecture.
• Block order, parallelism
• Information in built-in metadata

• Architectural capabilities per each block

• Packet modification and drop semantics

• Recirculation behavior

• Many, many more

source;
code;

p4; h/w 
mapping;

customer.pkg

?!?

Compiler needs lot of 
help to figure out the 
exact hardware mapping



• All vendors have the same problem. Win the ease-of-Use battle
• Make it easy for customer to navigate P4 to hardware mapping
• Hiding hardware details from P4 designers as much as possible
• Protect customers from necessary changes to compiler for hardware 

mapping and improve backward compatibility

• Visual representation and advantages
• Visually displaying logical table to hardware mapping and other relevant 

hardware details per node or block. Finding that information through P4 
files isn’t trivial for customer or P4 designer

• Auto generate P4 code while restoring rest of the P4 from the GUI 
modifications

• Validate mapping and inter dependencies early in the process
• Make relevant parts of P4 for a table or parser node editable from UI

P4 Designer

Debug

Deploy

Compile

P4

P4 Designer Requirements



Architecture – Loading existing P4 (P4 à GUI)

PNA P4 View Table Graph View Other Views
And Reports

UI Front End (React JS)

Back End Server (Node JS)

Validation
Module

Converter
Module (p4C)

UIInfo.JSON

P4 Files

P4C

HW/Driver JSON files 
(context, bfrt, P4Info, UIInfo)

Event flow for Loading P4
----------------------------------
1. Select P4 from UI
2. Front End sends request to 

Back End (GET)
3. Back End invokes converter 

module (P4C)
4. Converter Module generates 

JSON
5. Back End sends JSON to 

Front End
6. Front End to parse and 

display

1

2

3

4

5



Parser L2 Stage ACL Deparser

L3 Stage

Hash

Physical

Table
Foo Table

Bar

Table
Fiz

Table
XYZ

VM Meter

Decap
RSS

Logical

Exact

Prefix

Exact

Exact Hash

Hash

Mod

Prefix

Ternary

Exact

Table Types

?

Hash

Demo Example: Mapping Workloads to Hardware



Thank You



Backup



Generate/Edit/Restore P4 (GUI à P4)

PNA P4 View Table Graph View Other Views
And Reports

UI Front End (React JS)

Back End Server (Node JS)

Validation
Module

Converter
Module (JSON -> P4)

UIInfo.JSON

P4 Files

P4C Tools

HW/Driver JSON files 
(context, bfrt, P4Info, UIInfo)

Event flow for Generating P4
----------------------------------
1. Add or edit an entry in UI
2. Front End updates JSON
3. Front End sends update to 

Back End (POST)
4. Back End invokes converter 

module
5. Converter Module generates 

P4 from JSON
6. Back End sends P4 to Front 

End
7. Front End to parse and display



Parser Node Properties

Node ID

Depth Transition Hint

Minimum Valid Bytes Hint

M_VLAN
M_IPV4
M_IPV6

<None>
NODE_TCP
NODE_UDP

No Depth Change
0 - Outermost
1 - Outer or Only Tunnel
2 - Innermost Tunnel

Min Bytes: 0

Set

Set

Clear

?

?

?

?

New Marker

New Node ID

Graph Nodes

MAC

P

PAY

PAY

PAY
IPV4IPV6

TCP UDP

VLAN

<Node>

.

.

Drag and drop new nodes.

Parser Graph


