
PMNet
In-Network Data Persistence

Presenter: Korakit Seemakhupt
Sihang Liu, Yasas Senevirathne, Muhammad Shahbaz, Samira Khan

Presented at 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA)

Artifact available at pmnet.persistentmemory.org

https://pmnet.persistentmemory.org/

Summary
Motivation
• Datacenter applications usually store data in separate servers and manage through network
• Long latency of accessing data on the server slows down clients
• In-network compute reduces read requests’ latency but not update requests

Key Insight
• Network devices lack native data persistence support and cannot maintain data upon failure

PMNet
• Enhance existing P4 switch by adding persistent storage support
• Logs update requests in network devices and moves server’s latency off the critical path
• Recovers server using logged requests in case of a failure
• Integrates in-network data persistence with data replication and caching

Evaluation
• Programs PMNet packet processing with P4 and implements on FPGA
• Evaluates end-to-end system
• Improves throughput by 4.27x and tail latency by 3.23x over client-server baseline 2

Outline

3

Background and Motivation

In-network Data Persistence

PMNet Design

Evaluation

Conclusion

Caching and Replication

Storage Applications in Datacenter

4

Network

Social networking
MariaDB

Memcached
Redis

Latency of accessing data on the storage server is critical to the
performance of these applications

Client Applications Storage Servers

Online Transaction
Processing

Common datacenter applications store data in separate storage servers

Storage Applications in Datacenter

5

Network

Social networking
MariaDB

Memcached
Redis

Our breakdown shows that 70% of latency is from server side

Client Applications Storage Servers

Online Transaction
Processing

Common datacenter applications store data in separate storage servers

70% latency

Latency of Accessing a Data Store
Client’s

progress

6

Request

Response

Process

Client ServerNetwork

Processing ProcessingNetwork Stack Network Stack

Client Server
Observation: The client stalls waiting for the response from the server

7

Client ServerIn-network compute and cache

Mitigating Server-side latency

In-network compute [Brainwave NPU ISCA’18, iSwitch ISCA’19, E3 ATC’19, iPipe SIGCOMM’19]
- Add compute logic to network devices, such as switches and NICs
- Reduce RTT of compute tasks

In-network data caching [NetCache SOSP’17, Incbricks SOSP’17, DistCache FAST’19]
- Add volatile cache in network devices
- Reduce RTT of GET requests

These works exploits programmable network device to serve read requests
Can we do the same for update requests?

Request
Response

In-network Caching: Update Requests

8

Request

Response

Process

SET (x, 1)

ACK

In-network write caching with no persistent storage can cause data loss upon failure

Client ServerIn-network cache

Failure

Request
SET (x, 1)

Client’s
progress

Outline

9

Background and Motivation

In-network Data Persistence

PMNet Design

Evaluation

Conclusion

Caching and Replication

Our Proposal: In-network Data Persistence

10

Client ServerPMNet

Add Persistent memory to network device

Add persistent memory to log update requests

Key Idea: Persistent Logging

Client ServerPMNet

11

Request

Response

Log

SET (x, 1)

ACK

Request

Response

Process

PMNet enables sub-RTT data persistence in the network

RT
T

Su
b-

RT
T

Log request
Send ACK to unblock the client as soon as the update request persists
Forward the request to the server

Client’s progress

Off the critical path

1
2
3

1
2

3

Persistent Logging Challenge
How to recover lost packets?

12

In-flight requests can be lost due to a crash

Request

Challenge: System Recovery

Client Server
Client’s progress

13

Request

Response

Log

Set (x, 1)

ACK

The client receives ACK and cannot resend the request

Request Failure

PMNet

Failure

Solution: Recover from Persistent Logs

Client Server
Client’s progress

14PMNet recovers lost requests from persistent logs

PMNet

Recovery

Process

Retrans

Resend
Look up

Heartbeat

Server sends Retrans
PMNet looks up logged update request
PMNet resends logged request to the server

1
2
3

Outline

15

Background and Motivation

PMNet Design

Evaluation

Conclusion

Caching and Replication

In-network Data Persistence

PMNet Design Overview

16

ServerClient

PMNet

PMNet hardware: Use Match-Action Table (MAT) to control persistent memory

Persistent memory

Type Session ID SeqNum HashAddrUDPIPEthPMNet packet

PMNet headers
PMNet protocol: Identify PMNet packets and trigger processing

MAT Pipeline

PMNet Design Overview

17

ServerClient

PMNet

PMNet hardware: Use Match-Action Table (MAT) to control persistent memory

MAT Pipeline

Persistent memory

PMNet protocol: Identify PMNet packets and trigger processing

Type Session ID SeqNum HashAddrUDPIPEthPMNet packet

PMNet headers

Baseline NIC/Switch Architecture

Baseline NIC and switch forwards packet to the destination

Baseline NIC and switch forward packet with rules in Match-action table (MAT) pipeline

MAT Pipeline InterfaceInterface Forward

18

ServerClient

PMNet NIC/Switch Architecture

MAT Pipeline

PMNet MAT Pipeline controls access to the persistent memory

PMNet NIC and switch’s MAT pipeline process PMNet packet in addition to other packets

InterfaceInterface

PMUpdate logs

Log queues

Log queue isolates PM’s latency
from MAT pipeline

Store logged requests

19

ServerClient

PMNet NIC/Switch Hardware Design

MAT Pipeline

PMNet MAT Pipeline is compatible with P4-supported network devices

InterfaceInterface

PMUpdate logs

Log queues

20

ServerClient

Implemented in P4

PMNet NIC/Switch Hardware Design

MAT Pipeline

Request queue and memory controller are implemented in HDL
due to lack of persistent storage support

InterfaceInterface

PMUpdate logs

Log queues

21

ServerClient

Implemented in HDL

PMNet Design Overview

22

ServerClient

PMNet

PMNet hardware: Use Match-Action Table (MAT) to control persistent memory

MAT Pipeline

Persistent memory

PMNet protocol: Identify PMNet packets and trigger processing

Type Session ID SeqNum HashAddrUDPIPEthPMNet packet

PMNet headers

PMNet Design: Protocol
Defines four packet types on top of UDP

23

Type Session ID SeqNum HashAddrUDPIPEthPMNet packet

PMNet headers

header pmnethds_h {
bit<8> type;
bit<16> session_id;
bit<32> seq_no;
bit<32> hash_addr;

}

PMNet Design: Protocol
Defines four packet types on top of UDP

Log+forward request, send ACK

Remove log and unblock client

Resend logged entry

Forward request

PMNet performs different operation based on packet type
24

Bypass

Retrans

Ty
pe

s o
f p

ac
ke

t

ACK

Update

Type Session ID SeqNum HashAddrUDPIPEthPMNet packet

PMNet headers

MAT Pipeline
PMNet packet processing: Non-PMNet packets

PMNet forwards Non-PMNet packets
25

Is PMNet
Packet?

Input IF
Output IF

No Forward to server

MAT Pipeline
PMNet packet processing: Update requests

PMNet logs and forwards update requests and sends ACK to unblock client
26

Is PMNet
Packet?

Input IF
Output IF

Packet
Type

Yes

PMUpdate logs

Memory
Command
Generator

Update Response
Generator

ACK to client

Forward to server

Log request1

2

3

Log complete

MAT Pipeline
PMNet packet processing: ACK

PMNet ACK removes the logged entry
27

Is PMNet
Packet?

Input IF
Output IF

Packet
Type

Yes

PMUpdate logs

Memory
Command
Generator

ACK

Forward to Client

Remove log1

2

MAT Pipeline
PMNet packet processing: Retrans

PMNet Retrans resends the logged request
28

Is PMNet
Packet?

Input IF
Output IF

Packet
Type

Yes

PMUpdate logs

Memory
Command
Generator

Retrans Response
Generator

Request to
server

Forward to Client

Access log1

2

3

Logged request

MAT Pipeline
PMNet packet processing: Bypass

PMNet logs and forwards update requests and sends ACK to unblock client
29

Is PMNet
Packet?

Input IF
Output IF

Packet
Type

Yes

Forward to Server1

Outline

30

Background and Motivation

PMNet Design

Evaluation

Conclusion

Caching and Replication

In-network Data Persistence

PMNet Use-cases

31

Replication

Response

Request

Caching
Client ServerPMNet + Cache

Client PMNet PMNet Primary Replica

PMNet Use-cases

32
32

Replication

Response

Request

Caching
Client ServerPMNet + Cache

Client PMNet PMNet Primary Replica

PMNet Replication: Baseline Replication

Client Primary
Client’s progress

33

Request

Response

Replica

Replicate

ACK

Process
Process

Network

Wait3

2
2

1

Replicate request to all servers
Process the request
Wait until all servers respond

1
2
3

PMNet Replication: Baseline Replication

Client Primary
Client’s progress

34

Request

Replica

Replicate
Process

Process

Network

2
2

1

Response

Re
pl

ic
at

io
n

N
o

re
pl

ic
at

io
n

Replication increases blocking latency

Response
ACKWait3

Replicate request to all servers
Process the request
Wait until all servers respond

1
2
3

PMNet Replication: Replication with PMNet

Client PrimaryClient’s progress

35

ReplicaPMNet #1 PMNet #2

Two PMNet devices Two servers

PMNet Replication: Replication with PMNet

Client PrimaryClient’s progress

36

Response

Replica

Replicate

ACK

Process
Process

PMNet #1

Wait

PMNet #2

Request Request Request
Log

Log

ACK
ACK

1

2 2

3

The client sends the request and waits for 2 ACKs
PMNet #1 and #2 log the request and send ACK to the client
Client waits until it receives both ACKs

1
2
3

PMNet Replication: Replication with PMNet

Client PrimaryClient’s progress

37PMNet exploits persistent logging to move replication off the critical path

Replica

Replicate

PMNet #1 PMNet #2

Request Request Request
Log

Log

ACK
ACK

1

2 2

Re
pl

ic
at

io
n

+
PM

N
et

3

The client sends the request and waits for 2 ACKs
PMNet #1 and #2 log the request and send ACK to the client
Client waits until it receives both ACKs

1
2
3

Response

ACK

Process

Wait

Process

PMNet Use-cases

38
38

Replication

Response

Request

Caching
Client ServerPMNet + Cache

Client PMNet PMNet Primary Replica

ACK

In-network Caching: Update Requests

Client ServerPMNet + Cache
Client’s progress

39

Request
SET (x, 1)

Log

PMNet logs update requests

1

1

Request

In-network Caching: Read Requests

Client ServerPMNet + Cache
Client’s progress

40

Request

Response

Look up x

GET (x)

x=1

PMNet exploits logged entry and recovery mechanism to respond read requests.

Request
Cache Miss

PMNet logs update requests
PMNet receives read request and looks up an associated logged request in the PM
PMNet responds the read request (Hit) or forward the request (Miss)

2

3
3

Cache Hit

1
2
3

Outline

41

Background and Motivation

PMNet Design

Evaluation

Conclusion

Caching and Replication

In-network Data Persistence

Methodology
Hardware
PMNet
Server
Client

42

Xilinx VCU118 Evaluation platform
Intel Cascade Lake, 20 Cores, 192GB DRAM, 256GB DCPMM
Intel Haswell, 6 Cores, 64GB DRAM

PMNet evaluation platform

1

1
2

MAT pipeline (P4)
Emulated persistent memory
Network interfaces

2
3

3

Persistent memory on the server

Methodology
Design points
• PMNet-Switch: PMNet as a bump-in-the-wire in the TOR switch of server rack
• PMNet-NIC: PMNet as a bump-in-the-wire in the server’s NIC
• Client-Server: A baseline design that only persists update requests on the server

43
PMNet-NIC PMNet-Switch

Methodology
Workloads
•Microbenchmarks: Empty request handler on the server
• Persistent-memory-optimized datastore workloads:
• PMDK-based key-value stores:

B-tree, C-tree, RB-tree, Hashmap, Skiplist
• Redis: TPC-C, Twitter clone

44

Results: Microbenchmarks

45

Update request Bandwidth vs. Latency

0
20
40
60
80

0 2 4 6 8 10

La
te

nc
y

(μ
s)

Aggregated Bandwidth (Gbps)

Client-Server

Max bandwidth

Results: Microbenchmarks

46

Update request Bandwidth vs. Latency

0
20
40
60
80

0 2 4 6 8 10

La
te

nc
y

(μ
s)

Aggregated Bandwidth (Gbps)

Client-Server PMNet-Switch

Max bandwidth

Results: Microbenchmarks

47

Update request Bandwidth vs. Latency

Both PMNet-Switch and PMNet-NIC provide lower update latency and
same bandwidth as the baseline.

0
20
40
60
80

0 2 4 6 8 10

La
te

nc
y

(μ
s)

Aggregated Bandwidth (Gbps)

Client-Server PMNet-Switch PMNet-NIC

Same bandwidth
Lower latency

Max bandwidth

0

50

100

150

B-Tree C-Tree RB-Tree Hashmap Skip List Redis Average

La
te

nc
y

(µ
s)

Baseline PMNet

Results: Key-value store workloads

48

Average Update Latency

PMNet effectively reduces the average latency of update requests

4.2X

Results: Key-value store workloads

49

Tail latency (99th-P): 100% Update requests in Redis

PMNet significantly improves 99-percentile tail-latency of update requests

4.5X

Client-server PMNet

10 100

Results: Key-value store workloads

50

Tail latency: 50%-50% Update-read requests & Cache

Without read cache, PMNet only improves update requests’ latency.

2.5X

Redis

10 100

Results: Key-value store workloads

51

Tail latency: 50%-50% Update-read requests & Cache

With read cache, PMNet also improves read requests’ latency.

4.3X

Redis

10 100

0.0

50.0

100.0

150.0

Average

La
te

nc
y

(µ
s) Client-Server

Client-Server+Replication
PMNet
PMNet+Replicaiton

Results: Key-value store workloads

52

3-way Server Replication (R=3), all workloads average

PMNet reduces replication latency while offering the same level of fault tolerance.

5.9X

PMNet
Contributions

• PMNet introduces a new use-case of in-network computing, providing data persistence to the
network to accelerate update requests

• PMNet integrates replication and read caching with P4 programmable data planes

Results
• PMNet improves update throughput by 4.2X and tail latency by 3.2X on average
• PMNet improves 3-way replication (R=3) latency by 5.9X on average
• With Read caching, PMNet improves 50-50% mixed Read-update performance by 3.3X

53

Client ServerPMNet

Early ACK
Update

Update
Off the critical path

Presented at 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)
Artifact available at pmnet.persistentmemory.org

Thank You

Client ServerPMNet A PM-enhanced P4 switch

Early ACK

Update
Update

Off the critical path

Presented at 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA)

Artifact available at pmnet.persistentmemory.org

https://pmnet.persistentmemory.org/

