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Goal: Extend P4 Ecosystem To The Linux Kernel

Core Requirement: Scriptable Hardware offload of P4 MAT

Target personas:
• The P4 developer

• Knowledgeable in P4 - No interest in kernel internals

• Traditional Linux (non-P4) ops
• Knowledgeable in Linux - No interest in P4 internals
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Why P4 TC In The Linux Kernel?

• Grow P4 ecosystem to a much larger audience of devs and ops
• Take advantage of existing, widely used infrastructure

• Containers, VMs, baremetal, servers, middle boxes, etc

• TC infrastructure maps to P4 MAT with built-in HW full/partial offload
• Very little core kernel changes required to support new P4 infrastructure code

• Why not DPDK or other user space datapaths?
•  Kernel provides a singular interface

• No vendor-specific fragmentation in DPDK based APIs
• DPDK selling point performance

• Our view: Performance is achieved by offloading
• Gain usability by using well understood kernel interfaces and tooling

• Why not ebpf?
• Hardware offload and scriptability is a core requirement
• ebpf still in active development (compiler, verifier, kernel, etc)
• Challenges in writing complex programs (turing completeness issues)
• Ops entry engagement point is steep
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   Motivation and Design
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Upstream Sayeth: Thou Shalt Have A Software Twin

Upstream Requirements

• SW and HW are functionally equivalent

• P4 program runs in absence of offloadable HW

• Partial and/or full offload
• Pipeline exists in both HW and SW

Benefits

• Test your P4 program in the kernel
• Baremetal, VM, container, etc
• When ready toggle policy knob to use HW offload

• Build realistic digital twin to mimic deployed offload

• Use P4 in new infrastructure experiments
• Accelerate when needed

5



Core Design Principle: Scriptability

Template-driven architecture

• map P4 Program to mechanisms in the kernel

• kernel independence

A P4 program is constructed via scripts from user space

• A new P4 program does not need kernel or user space changes

• Prior art: u32 classifier, pedit packet editor, skbedit metadata editor
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Motivation: Kernel independence

• Challenges
• High effort investment for upstreaming (or any kernel coding)

• Specialized social and technical skills required
• 2-3 years cycles post-upstreaming to a supported distro (RHEL etc)

• Speeding up of this process means NRE to the distro vendor
• Still 6 months vetting release time frames

• Some DCs: Upto a year cycle if newly coded feature requires compilation
• Compiled(binary blob) change require vigorous validation
• No such restrictions in operational scripting

• Side-Benefits
• Lowering entry point for defining a new datapath or protocols
• Less kernel code => reduce kernel maintenance overhead
• No need to battle newer kernels, compilers, tools, skills, etc

• No need for inhouse gurus
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Scriptability Roadmap

• Upstream Once
• Add all features needed into the kernel 

• Add any missing functionality in TC to support P4 generically

• Any subsequent changes to the kernel will be bug fixes

• No Kernel or user space code changes for any P4 prog
• No code generation or compiling of loadable blobs 

• i.e no kernel modules, ebpf,  etc.

• No change to user space/control iproute2::tc control/provision
• Scriptable Introspection (as opposed to a DSL)
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General Design Goals

• Desire to be P4-architecture independent
• i.e support PSA (for switches) or PNA in NIC environment, etc

• Desire support multi-vendor implementations of P4
• Debuggability

• Ease developer and operator runtime troubleshooting

• Admission Control for hardware resources
• Generated Template “Program loading” tells the kernel about resource limits
• Kernel keeps state of in-use resources

• Efficient Control Plane Table CRUD Netlink Messaging
• Lower Latency for Individual transactions
• Higher Throughput for batching
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     Workflow
Program Installation And Runtime
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Workflow: Creating And Installing The P4 Program

P4 Dev approach
1. Author writes the P4 program
2. Build P4 program (using a compiler) targeting 
TC and/or hardware
3. Author/dev executes the tc template scripts to 
“install P4 program”

Linux Ops approach
1. Manually create tc scripts
2. Execute them to install
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Runtime: P4 Program Mapping to TC Infrastructure

Note the multiple keys for some tables..



Runtime: P4 Pipeline Control

Admission Control



Runtime: P4 Table Control

Rejection if not matching hardware 
capacity/capability



P4 Objects Kernel Abstractions
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Compiler Generated Template Hooks: 
Table Instance Preactions And Postactions 
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Compiler Generated Template Hooks: 
        Pipeline Pre and Post Actions 
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Program Abstraction
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Slightly Complex Program
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TC Kernel Gaps

• Kernel
• Action block need revamp to add P4 action selectors
• Externs - anything that the compiler can see we should be able to 

handle

• P4
• Multiple keys
• Multiple table + pipeline instance
• Deparser behavioral consequences

• Inline in SW vs at end of pipeline for HW
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Thank You
• Project status: Coding in progress

• Mailing list, to subscribe:
• send email with subject “subscribe” to: p4tc-discussions@netdevconf.org

• Biweekly meetings (join the mailing list to find out)

• Project is incubating
• Serious contributors welcome
• Hope to have packets passing in about 6 months


