AMDC1

Expanding the P4 universe

Gordon Brebner

Senior Fellow
Adaptive & Embedded Computing Group

Happy birthday to P4,

" P4, specification version 1.1.0, May 2017

4 © Copyright 2022 AMD AMDi‘.l

Brebner’s experience-based ‘law’ of domain-specific language evolution

-

PX (2009 —2014) P4,. (2017 —2022)
P

G (2006 —2009) P4,, (2014 —2017)

q © Copyright 2022 AMD AM D:‘

Switches and NICs: from a P4 viewpoint

» Switch-style architecture

Ingress Ingress

Parser

Ethernet

Switch fabric Ports

Egress
Parser

= “NIC”: Choose your preferred name/flavor
= SmartNIC
pi = DSC
= |PU
Ethernet
Ports - DPU
Egress gress /A _ w = SmartNAC
= NAS

> NIC-style architecture

Host CPU

Parser

= Key thing for P4: Network-Attached Hub

All look rather similar in P4 world: it’s the programmable data plane that matters

3 © Copyright 2022 AMD AMDi‘.l

AMD and P4: SNxxxx SmartNIC product family

Two-port SmartNIC: SN1022 is 2 x 100G

Line-rate shrink-wrapped data plane implemented on FPGA
= Standard protocol processing
= Encapsulation / decapsulation
= OVS offload

FPGA programmed by AMD-Xilinx using P4

Data paths have multiple points for user-developed plug-ins
= Open-ended extensions

FPGA programmed by user using P4

3 © Copyright 2022 AMD AM D b‘l

AMD and P4: Open-source OpenNIC project

| —s AXI-Lite @ 125MHz |
| e AXI-Stream @ 250MHz |
! ep AXI-Stream @ 322MHz !

E——— | = https://github.com/Xilinx/open-nic
l l Box CMAC Subsystem l ‘
| AXl-Lite Registers | e | AXI-Lite Registers |
rore | i comwapmr | [vsermo comoe | ooz | i | S, . .
| — | (e || [owe || = = Bare-metal NIC for networking researchers
B = One- or two-port 100G configurations

= Design your own line-rate processing
= Standard network and DPDK drivers

Data paths can be implemented in P4
= Using P4-to-FPGA compilation flow

Growing international community

= Piloted with ~20 research groups

Community is porting OpenNIC to increasing number of Alveo platforms

S © Copyright 2022 AMD AMDZA

https://github.com/Xilinx/open-nic

Democratization of P4

= QOriginal switch focus
m“itapufasmsn ‘lzgz{l;:\“ o Not many P4-programmable switches

“‘“a“ Not many people allowed to program switches
Switches are not (re-)programmed very often

authqj:;{]tgﬂman =freedp
rac 0L
uautucratluunuamentahsmﬂmtatnrshm = heter’ggeneitu
N Hence research tends to be more theoretical

democraty

D
D @ %Pefap,,,sV!Ufﬂntsumalﬂnﬂthn olitic
% i LUl T gﬂ ﬂ”yEﬂ'l[]I]WBl‘ = Multiple examples of P4-programmable NICs

Olig

Q Stop
74 el HI nf
% %% R ’tH Bﬂmpﬂlﬂﬂﬂl’s Wider access to systems housing NICs
R c; authoritarianism ’ °
§= egahtaman = NICs can be frequently reprogrammed
SSS 0%5 - Blossoming of P4-related research anticipated
SE&& &
SeE %
%a,, = This could be the ‘five-year refresh’ for P4
=3
%

AMDA

© Copyright 2022 AMD

Expanding P4 coverage

= Switch-oriented functional coverage
= Basic switching functions — PISA model
= Notable unprogrammable component: traffic manager
= In-switch compute examples often involve ‘P4 abuse’

= NIC-oriented functional opportunities and needs are greater
= Still have standard packet processing functions

Customized transport and higher functions

Termination (to host, storage) functions
Other offloaded infrastructural functions

Network-attached compute (inc. ML)

= How far might the domain of domain-specific P4 be broadened?

. © Copyright 2022 AMD AMDZ

P4 standard architectures: good, bad, or irrelevant?

The key innovation in P4, was language-architecture separation
= Something not the case in P4,

= This notion has stood the test of time P4.¢ Portable Switch Architecture (PSA)

« v1.1 [HTML | PDF] (Nov 2018)
» Working draft. [HTML | PDF]

Associated with this was the idea of standard architectures
= To encourage portability of P4 code

The notion of externs, and standard libraries, has stood the test of time

P4, Portable NIC Architecture (PNA)

But the notion of standard architecture models maybe has not

« v0.5 [HTML | PDF] (May 2021)

= Portable Switch Architecture (PSA): more-or-less PISA revisited ;
» Working draft. [HTML | PDF]

= Portable NIC Architecture (PNA): less clear what’s portable

Might stifle innovation?

3 © Copyright 2022 AMD AM Di‘.l

P4 archipelagos: collections of P4 islands

= P4 subsystems can be portable
= Designed using modules
= Include standard externs

= Used and re-used as components
in diverse systems

e e —— = JORE . The Isle of Ingress 7 . Bandwidth
The Isle of Eg

ress peak

= Example:

= AMD SN1000 SmartNIC data
path built from nine separate
P4 components

= Then user plug-ins are more
separate P4 components

The Isle of

Post-Edit = Moving P4 onwards from a
standard-ish switch era to a
diversified NIC era

e SV

-Parse &=

'3 © Copyright 2022 AMD AM D i"l

Expanding coverage: Programable Target Architecture (P4 Workshop, Nov 2015)

Prototype 2 demonstrated today at 100 Gb/s rate
P4 1.user c ded
. xtende

P4 1.arch

Front end Xilinx Labs mapper

A Xilinx
\ SDNet

\ E=——

© Copynght 2015 Xilnx

£ XILINX » A

11

Slide from talk at P4 Workshop, November 2015

© Copyright 2022 AMD

This was when the language/architecture notion
was just crystalizing

Describing complete systems with P4 extensions
= P4 components
= Other non-P4 components
= Connectivity between components

Inspired by Click

Implemented using FPGA
= Not so popular for fixed-component targets

Meant also to be vehicle for formal descriptions
of portable standard architectures, like PSA

New thought: could describe a P4 archipelago

AMDZ1

Event-Driven Packet Processing

Stephen Ibanez Gianni Antichi
Stanford University Queen Mary University of
London

ABSTRACT

The rise of programmable network devices and the P4 pro-
gramming language has sparked an interest in developing
new applications for packet processing data planes. Current
data-plane programming models allow developers to express
packet processing on a synchronous packet-by-packet basis,
motivated by the goal of line rate processing in feed-forward
pipelines. But some important data-plane operations do not
naturally fit into this programming model Sometimes we
want to perform periodic tasks, or update the same state
wvariables multiple times, or base a decision on state sitting at
a different pipeline stage. While a P4-programmable device
might contain special features to handle these tasks, such
as packet generators and recirculation paths, there is cur-
rently no clean and consistent way to expose them to P4
programmers. We therefore propose a common, general way
to express event processing using the P4 language, beyond
just processing packet arrival and departure events. We be-
lieve that this more general notion of event processing can
be supported without sacrificing line rate packet processing
and we have developed a prototype event-driven architec-
ture on the NetFPGA SUME platform to serve as an initial
proof of concept.

ACM Reference Format:

Stephen Ibanez, Gianni Antichi, Gordon Brebner, and Nick McK-
cown. 2019. Event-Driven Packet Processing. In The 18th ACM
Workshop on Hot Topics in Networks (HotNets '19), November 13-
15, 2019, Princeton, N, USA. ACM, New York, NY, USA, 8 pages.
hitps://doiorg/10.1145/3365609 3365848

1 INTRODUCTION
Programmable network devices have been gaining signifi-
cant traction within the networking community as a result

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Absiracting with
credit is permitted. To copy otherwise, or republish. to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

HotNets '19. November 13-15, 2019, Princeton, NT, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-T020-2/1%11.._$15.00

hittps://doi.org/ 10.1145/3365609. 3365548

Nick McKeown
Stanford University

Gordon Brebner
Xilinx Labs

of their unique ability to deploy custom algorithms that op-
erate at line rate. There have already been many interesting
applications that take advantage of this new found ability
to program the data plane [6, 10, 12, 13, 18]. P4 has emerged
as the de facto language for programming the data plane.
P4 programs are designed to be compiled onto a class of
data-plane architectures called Protocol Independent Switch
Architecture (PISA) [2]. PISA architectures are composed
of programmable parsers, match-action pipelines, and de-
parsers and are designed to process packets at line rate. Each
instance of a PISA architecture exposes a certain data-plane
programming model to the P4 programmer who then works
within the confines of the provided programming model to
implement their custom processing logic. Every data-plane
programming model is driven by a set of data-plane events,
where a data-plane event is an architectural state change
that triggers processing in the programming model.

The simple PISA architecture introduced in [2] consists
of a single programmable parser, match-action pipeline, and
deparser connected in series. The P4 language consortium
recently defined a different PISA architecture called the
Paortable Switch Architecture (PSA), which is depicted in Fig-
ure 1. The PSA consists of two P4 programmable pipelines,
one to process packets on ingress and one to process packets
on egress as they leave the device. Both of these architectures
are what we call baseline PISA architectures. A baseline PISA
architecture supports a programming model that exposes
synchronous packet-by-packet processing to the P4 program-
mer. That is, the programming model only allows developers
to define how to handle a small set of packet-related events,
usually ingress and egress packet events.

We observe that many data-plane algorithms do not nat-
urally fit into this synchronous packet-by-packet program-
ming model. Some applications need to execute logic inde-
pendently of packet arrivals and departures. For example,
HULA [14] is a load balancing application that must peri-
odically generate probe packets to measure link utilization.
‘When deployed on a baseline PISA architecture, these HULA
probe packets must be generated by either the control plane
or end hosts because the programming model provides no
means to perform periodic tasks or generate packets. Simi-
larly, the Count-Min Sketch (CMS) [5] is a commonly used
data-plane primitive that must be periodically reset. When
a CMS is used in a baseline PISA architecture, the control

Paper presented at Hot Nets ‘19

Expanding coverage: Generalized event-driven processing model

= Standard P4 programming model involves handling only
packet-related events at ingress or egress

= To broaden scope, desirable to generalize event-driven model
to encompass other types of triggering events, for example:

Packet arrivals and departures
Buffer overflow and underflow
Link status change

Timer expiration

Control plane signals
User-defined events

= Example applications:

© Copyright 2022 AMD

Traffic management

In-network computing
Congestion-aware forwarding
Network management and monitoring

AMDZ

Expanding coverage: Programmable Traffic Management

PIFO = Tackle the most famous ‘black box’ in
- 1 standard P4 architectures

e PIFO - proposed abstraction that can be used to implement
many scheduling algorithms

= Relevant in NIC context, as part of

e Packets are pushed into an arbitrary location based on infrastructure offload for hosts with
computed rank multiple tenants
Rank Computation PIFO scheduler

= Extend P4 to include scheduling and
shaping algorithms, to then enable
programmable traffic management

f = flow(pkt)
ptmp =T[f] + p.len

= Experiments have compared PIFO
style with selection before queue
insertion and more conventional

(programmable) (fixed logic) style with selection at queue removal

p.rank=2 * p.tmp

o4

Based on PIFO research (Sivaraman et al., SIGCOMM 2016)
FPGA implementation with Dalleggio (NYU) and Ibanez (Stanford)

3 © Copyright 2022 AMD AMDZ\

Expanding coverage: Programmable Transport Protocols

14

Overall goal is to support customized transport protocols

= Essential for end systems

Three main P4 extension areas needed:
= Congestion control mechanisms
= Segmentation and reassembly
= Statefulness

Notable past work by Mina Arashloo et al.

Congestion control:

= Recent work on offload of active and passive
measurement aspects to NIC hardware

= New focus for the P4 Applications WG

End-to-end

Framework

© Copyright 2022 AMD

Plethora of congestion control approaches:
Opportunity for extended-P4 programmability

AMDZ1

Other expansion trends

= NIC context for P4 has inspired various non-standard extensions, e.g.

Host interface: programmable DMA

Data plane writeable match-action tables

Stateful segmentation

Non-trivial computational externs

Cryptographic operations

= Watch out for other things presented at P4 Workshop

3 © Copyright 2022 AMD AM D l"l

P4 is alive and well, and at the lift-off point for expanding its universe

Change of emphasis from Switch to NIC (or whatever marketing term is preferred) means democratization of P4

NIC context drives expansion of functional coverage of P4 into natural adjacencies

NIC diversity suggests move from standard P4 architectures to custom P4 archipelagos

Great opportunities for everyone to put effort into developing a pure framework for P4 expansion

© Copyright 2022 AMD

AMDZ1

DISCLAIMER AND ATTRIBUTIONS

DISCLAIMER

The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this
document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced
Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind,
including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other
products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the
purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18

©2022 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names
used in this publication are for identification purposes only and may be trademarks of their respective companies.

AMDZ

© Copyright 2022 AMD

