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P4-DPDK: What is it

• Open-source framework to run P4 programs on multi-core CPUs.

• Goal: Develop better and faster SW switches and network stacks by 
combining the P4 language flexibility with the DPDK performance.

• The IPDK project uses P4-DPDK as the CPU target.

• Open-source:
• P4 compiler back-end and TDI implementation on p4.org
• P4 data plane engine on dpdk.org.

P4-DPDK is getting better, faster and more pervasive every year!

https://github.com/p4lang/p4c/tree/main/backends/dpdk
http://git.dpdk.org/dpdk/tree/lib/pipeline


P4-DPDK: What is it (2)

Component Open-source repository

DPDK P4 data plane engine http://git.dpdk.org/dpdk/tree/lib/pipeline

P4C compiler back-end https://github.com/p4lang/p4c/tree/main/backends/dpdk

Table Driven Interface (TDI) https://github.com/p4lang/tdi

TDI implem. for P4-DPDK target https://github.com/p4lang/p4-dpdk-target

P4Runtime server https://github.com/stratum/stratum/tree/main/stratum/hal/lib/barefoot

IPDK https://github.com/ipdk-io

http://git.dpdk.org/dpdk/tree/lib/pipeline
https://github.com/p4lang/p4c/tree/main/backends/dpdk
https://github.com/p4lang/tdi
https://github.com/p4lang/p4-dpdk-target
https://github.com/stratum/stratum/tree/main/stratum/hal/lib/barefoot
https://github.com/ipdk-io


P4-DPDK: What it is not

• P4-DPDK is not a P4 language simulator, like BMv2. Performance is 
key for P4-DPDK!
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New feature: Compiled pipeline

pipeline.
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• Interpreted pipeline mode (runs the pipeline.spec file):
• The plain text .spec file contains the P4 object 

definitions (headers, meta-data, actions, tables, etc) 
and subroutines (translated actions and control blocks).

• The subroutines are made out of instructions from a 
predefined P4 “virtual machine” ISA. The instruction 
operands are the P4 objects.

• Performance penalty: for every instruction, a function 
pointer is invoked (slow)!

• Compiled pipeline mode (runs the pipeline.so file):
• The binary shared object .so file is built out of the 

pipeline.c file, which is generated from the .spec file.
• The .c file contains a C function for every action and 

control block. The instructions are replaced by an 
inline call to their associated function.

• Performance improvement (typ. 30-70%): achieved 
by the C compiler having visibility on the entire 
pipeline code, which it can now efficiently optimize!
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Enable the compiled pipeline mode for even more performance!



New feature: Compiled pipeline (2)

• Currently …

• The external controller loads the .spec file to the target agent. 

• The code generation (pipeline.c) and build (pipeline.so) are executed 
silently under the hood by the target agent at initialization, if 
enabled; if failing for any reason (e.g. C compiler not installed), the 
execution reverts to the interpreted mode.

Currently, the compiled pipeline mode can be easily enabled at 
run-time simply by exporting the following environment variable:

export RTE_INSTALL_DIR=<PATH_TO_DPDK_FOLDER>
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New feature: Compiled pipeline (3)

• Going forward …

• The intention is to move the code generation and build to a 
standalone tool that can be executed off-line with more granular 
options.

• Then, the external controller will be able to load either the .spec file 
(in the baseline interpreted pipeline mode) or the .so file (in the 
optimized compiled pipeline mode).
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Use-case: VXLAN Encapsulation
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Highlights:
• Exact match table lookup: 64K tunnels
• Complex action: push 50 bytes of headers from the table entry to the packet, update IPv4 and 

UDP length, update IPv4 checksum.



Use-case: Complex FIB with VRF and ECMP/WCMP

Route 

Table

Highlights:
• Route Table: Virtual Routing and Forwarding (VRF) support. Key: vrf_id (exact match), 

ipv4_dst_addr (LPM match);
• Next Hop Group Table: Equal/Weighted Cost Multi-Path (ECMP/WCMP) support;
• Next Hop Table: Exact match.
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Use-case: Connection Tracking

Connection 

Table
Ethernet IPEthernet IP

Highlights:
• Connection table: PNA add-on-miss table that allows the data plane to modify the table entries 

without any control plane intervention. Entries automatically expire on timeout, unless hit and 
their timer rearmed.

• Default action: learn (conditionally) the missed flow.
• Regular action: rearm the hit entry timer or do nothing (conditionally).

P4 program:
https://github.com/p4lang/pna/blob/main/examples/pna-example-tcp-connection-tracking.p4

TCPTCP

PNA add-on-miss table

https://github.com/p4lang/pna/blob/main/examples/pna-example-tcp-connection-tracking.p4


Conclusions

1. A lot of work has been done lately in P4-DPDK to enable more features, 
performance and use-cases.

2. P4-DPDK can be used to quickly develop complex CPU network stacks. 
One example is the P4-OVS project under IPDK.

3. P4-DPDK is becoming better, faster and more pervasive every year!



Thank You


