
Develop your CPU network stack in P4
Cristian Dumitrescu, SW Architect, Intel



Agenda

1. P4-DPDK: What is it

2. P4-DPDK: What is it not

3. P4-DPDK Feature Update

4. P4-DPDK New Feature: Compiled Pipeline

5. Example Use-cases

6. Conclusions



IPDK.io

IPDK 

Targets

Use 

Cases

IaaS PaaS Inline Acceleration

Open 

Community

Compiler

Driven

IPDK Target Abstraction Interface

NETWORK STORAGE CRYPTO FIREWALL,IDS ML/AI 5G/EDGE

IPDK Infrastructure Application Interface

CPU Target IPU Target Switch Target

P4-DPDK is the 
IPDK P4-based 

CPU target



P4-DPDK: What is it

• Open-source framework to run P4 programs on multi-core CPUs.

• Goal: Develop better and faster SW switches and network stacks by 
combining the P4 language flexibility with the DPDK performance.

• The IPDK project uses P4-DPDK as the CPU target.

• Open-source:
• P4 compiler back-end and TDI implementation on p4.org
• P4 data plane engine on dpdk.org.

P4-DPDK is getting better, faster and more pervasive every year!

https://github.com/p4lang/p4c/tree/main/backends/dpdk
http://git.dpdk.org/dpdk/tree/lib/pipeline


P4-DPDK: What is it (2)

Component Open-source repository

DPDK P4 data plane engine http://git.dpdk.org/dpdk/tree/lib/pipeline

P4C compiler back-end https://github.com/p4lang/p4c/tree/main/backends/dpdk

Table Driven Interface (TDI) https://github.com/p4lang/tdi

TDI implem. for P4-DPDK target https://github.com/p4lang/p4-dpdk-target

P4Runtime server https://github.com/stratum/stratum/tree/main/stratum/hal/lib/barefoot

IPDK https://github.com/ipdk-io

http://git.dpdk.org/dpdk/tree/lib/pipeline
https://github.com/p4lang/p4c/tree/main/backends/dpdk
https://github.com/p4lang/tdi
https://github.com/p4lang/p4-dpdk-target
https://github.com/stratum/stratum/tree/main/stratum/hal/lib/barefoot
https://github.com/ipdk-io


P4-DPDK: What it is not

• P4-DPDK is not a P4 language simulator, like BMv2. Performance is 
key for P4-DPDK!



NIC
I/O Port

P4C IR 
(.spec 
file)

Pipeline-
to-CPU 

core 
mapping

Pipeline 
(Instructi

ons)

Metadata

Actions 
(Instructi

ons)

Extern 
Function 

I/F

Extern 
Object I/F

Headers

CLI-
based 

test agent

Atomic 
Table 

Updates

Inet 
Cksum

Unit Test 
Suite

PCAP File 
I/O Port

Drop
I/O Port

Exact 
Match 
Table

Ring
I/O Port

Wildcard 
Match 
Table

TAP 
I/O Port

Counters 
& 

Registers

Meters
Packet 

Recirculat
ion

P4-DPDK Feature Update (since P4 Workshop 2021)

LPM 
Table

Action 
Selector

Add-on-
Miss 

Tables w/ 
Timeout

Pipeline
C code 

generate

MORE 
P4 

EXAMP
LES!

?

?

?

?

?

?

?

?

Packet 
Mirroring

PNA arch 
support

Varbit 
Headers

P4Runtim
e Support 

(TDI)

MORE 
PERFORM

ANCE!

MORE 
DOCUM
ENTATI

ON!

Better 
error 
msgs

Soft NIC 
P4

Fixed 
Func: 
Traffic 

Mgr

Fixed 
Func: 

Crypto/ 
IPsec

? ?

?

?

= New; = Old; = Future;



New feature: Compiled pipeline

pipeline.

p4
P4C 

Compiler

pipeline.

spec

DPDK 

pipeline 

library

pipeline.

c

• Interpreted pipeline mode (runs the pipeline.spec file):
• The plain text .spec file contains the P4 object 

definitions (headers, meta-data, actions, tables, etc) 
and subroutines (translated actions and control blocks).

• The subroutines are made out of instructions from a 
predefined P4 “virtual machine” ISA. The instruction 
operands are the P4 objects.

• Performance penalty: for every instruction, a function 
pointer is invoked (slow)!

• Compiled pipeline mode (runs the pipeline.so file):
• The binary shared object .so file is built out of the 

pipeline.c file, which is generated from the .spec file.
• The .c file contains a C function for every action and 

control block. The instructions are replaced by an 
inline call to their associated function.

• Performance improvement (typ. 30-70%): achieved 
by the C compiler having visibility on the entire 
pipeline code, which it can now efficiently optimize!

C 

Compiler

pipeline.

so

Enable the compiled pipeline mode for even more performance!



New feature: Compiled pipeline (2)

• Currently …

• The external controller loads the .spec file to the target agent. 

• The code generation (pipeline.c) and build (pipeline.so) are executed 
silently under the hood by the target agent at initialization, if 
enabled; if failing for any reason (e.g. C compiler not installed), the 
execution reverts to the interpreted mode.

Currently, the compiled pipeline mode can be easily enabled at 
run-time simply by exporting the following environment variable:

export RTE_INSTALL_DIR=<PATH_TO_DPDK_FOLDER>

Server

Pipeline

CPU

core

Setup

(Init time)

External 

Controller

Table Updates, 

Stats Read

(Runtime)

Pipeline

CPU

core

Pipeline

CPU

core

Target 

agent

CPU

core

Intel NICsIntel NICsNICs
Intel NICsIntel NICsNICs

pipeline.

spec

Code 
generation 
& build at 

init.



New feature: Compiled pipeline (3)

• Going forward …

• The intention is to move the code generation and build to a 
standalone tool that can be executed off-line with more granular 
options.

• Then, the external controller will be able to load either the .spec file 
(in the baseline interpreted pipeline mode) or the .so file (in the 
optimized compiled pipeline mode).

Server

Pipeline

CPU

core

Setup

(Init time)

External 

Controller

Table Updates, 

Stats Read

(Runtime)

Pipeline

CPU

core

Pipeline

CPU

core

Target 

agent

CPU

core

Intel NICsIntel NICsNICs
Intel NICsIntel NICsNICs

pipeline.

p4
P4C 

Compiler

pipeline.

spec
Build 

Tool

pipeline.

c
C 

Compiler

pipeline.

so

Code generation & 
build to be done 

off-line.



Use-case: VXLAN Encapsulation

VXLAN 

Tunnels 

Table

Outer 
Ethernet

Outer 
IPv4

Outer 
UDP

Outer 
VXLAN Ethernet IPv4Ethernet IPv4

Highlights:
• Exact match table lookup: 64K tunnels
• Complex action: push 50 bytes of headers from the table entry to the packet, update IPv4 and 

UDP length, update IPv4 checksum.



Use-case: Complex FIB with VRF and ECMP/WCMP

Route 

Table

Highlights:
• Route Table: Virtual Routing and Forwarding (VRF) support. Key: vrf_id (exact match), 

ipv4_dst_addr (LPM match);
• Next Hop Group Table: Equal/Weighted Cost Multi-Path (ECMP/WCMP) support;
• Next Hop Table: Exact match.

Next Hop 

Group 

Table

Next Hop 

Table

PSA Action Selector

Ethernet IPv4 Ethernet IPv4



Use-case: Connection Tracking

Connection 

Table
Ethernet IPEthernet IP

Highlights:
• Connection table: PNA add-on-miss table that allows the data plane to modify the table entries 

without any control plane intervention. Entries automatically expire on timeout, unless hit and 
their timer rearmed.

• Default action: learn (conditionally) the missed flow.
• Regular action: rearm the hit entry timer or do nothing (conditionally).

P4 program:
https://github.com/p4lang/pna/blob/main/examples/pna-example-tcp-connection-tracking.p4

TCPTCP

PNA add-on-miss table

https://github.com/p4lang/pna/blob/main/examples/pna-example-tcp-connection-tracking.p4


Conclusions

1. A lot of work has been done lately in P4-DPDK to enable more features, 
performance and use-cases.

2. P4-DPDK can be used to quickly develop complex CPU network stacks. 
One example is the P4-OVS project under IPDK.

3. P4-DPDK is becoming better, faster and more pervasive every year!



Thank You


