
P4Testgen – An Extensible Test Oracle for P4

Fabian Ruffy (Intel/NYU),
Jed Liu (Akita Software), Prathima Kotikalapudi (Intel),

 Vojtěch Havel (Intel), Rob Sherwood (Intel),
Vladyslav Dubina (LitSoft), Volodymyr Peschanenko (LitSoft),

 Anirudh Sivaraman (NYU), Nate Foster (Intel/Cornell University)

Brief Outline

• Refresher on P4 Targets

• How are network devices tested? What are the problems?
• P4Testgen (Overview)

• P4Testgen (Details)

• P4Testgen (Status)

2

os_lib.p4 switch_lib.p4 dpu_lib.p4 nic_lib.p4

program.p4

The networking stack
of the OS (e.g., eBPF)

P416 Compiles to Many Targets

3

P416 Target-Independent Software Workflow

4

P4 Architecture
Model

P4 Compiler

Target-specific
configuration

binary

Data PlaneTables Extern
objects

Load

Target
Target-Supplied

P4 Program

User-supplied

Control Plane

Add/remove
table entries

CPU port

Packet-in/outExtern
control

RU
N
TI
M
E

Slide Credit: Mihai Budiu

Testing Your Target

Control plane
configuration

How is a P416 Target Tested?

6

Test harness

Test file

P4
program

Target

OK

Equal?

Bug
Input

packets

P4
compiler

Packet
output

Expected
output

Test
parser

Reality

The Problem With Manual Testing

• Return of investment for a test is unclear.
• What does this test actually cover?
• Have we covered enough?

• Writing packet tests is hard.
• Inputs are sequences of bits.
• Tedious boilerplate required to test a single feature.

8

?
% of program
 covered

Tests written

We do not write that many end-to-end tests for switch programs.

We Can Do Better

• P4 gives a machine-readable contract on how the network device will behave.

• We have full access to the P4 source code and its semantics.
• We also know how the target device interprets P4 code.
• Rich body of software engineering research and formal methods exists.

9

Let’s automate testing!

Idea: Generate Tests With Symbolic Execution

• Walk a random path through the P4 program.

• Collect up a symbolic path constraint.

• Encode the constraint as a first-order logic formula.

• Use an SMT solver to find a model (if it exists).

• Convert the model into an input and output test.

• Emit the test and the associated program trace.

𝞅

Two Conflicting Requirements

Do not tailor to a target device.

(Tofino, eBPF/XDP, BMv2, IPU…)

Model whole program semantics.

(How does the target actually

interpret the P4 code?)

No existing tool
bridges this gap!

• Generates inputs and outputs.
• P4Testgen not only checks crashes, but also semantically incorrect behavior.

• Target-independent.
• Designed to support test case generation for any P4 target.
• Anyone can add their own target as an extension (we can reuse code!).

• Whole program semantics.
• Covers the semantics of the P4 program and the device that executes the program.
• Implicitly models the device specification for single packet tests.

P4Testgen

P4Testgen: Workflow

test3test2
test1

Emitted
test cases

P4 program

P4Testgen front end

Target program optimizations
 (v1model, tna, ebpf,…)

P4Testgen oracle

Target semantics
(v1model, tna, ebpf,…)

P4 semantics
SMT solver (Z3)

Target test generators
(STF, PTF, Protobuf,…)

Abstract test generator

P4Testgen Checks The Target Stack - Not P4 Code

14

P4 Architecture
Model

P4 Compiler

Target-specific
configuration

binary

Data PlaneTables Extern
objects

Load

Target

User Program

Control Plane

Add/remove
table entries

CPU port

Packet-in/outExtern
control

RU
N
TI
M
E

We are testing this.

NOT this!

P4 Program

DEMO

Who Benefits From P4Testgen?
• Compiler developers can use P4Testgen to…

• …validate their back end optimization passes.

• Network operators can use P4Testgen to…
• …generate tests for their programmable devices and deployed programs.

• Equipment vendors can use P4Testgen to…
• …certify they are compliant with the manufacturer and P4 specification.

• Users of fixed-function devices can use P4Testgen to…
• …derive validation tests from the P4 model of the device under test.

16

The Road to Whole Program Semantics

Whole-Program Semantics

Three Requirements

1. P4Testgen must be an oracle for the P4 language.
• Should not worry about P4 semantics when writing a P4Testgen extension.

2. P4Testgen must be as broad as the P4 language specification.
• Leave room for target-specific behavior (e.g., drop packet when certain metadata is set).

3. P4Testgen must be resilient against target quirks.
• Detect or mitigate non-determinism.
• Model target-environment constraints (e.g., influence of packet size on processing semantics).
• Allow for non-standard interpretation of the P4 specification.

Challenge 1 - How to Model a Target’s Data and Control Flow?

• P4 programs only describe the programmable blocks of the target.

• How can we know what happens in-between these blocks?
Pa

rs
er

C
on

tro
l

D
ep

ar
se

r

Semantics defined by P4 program

Semantics defined by target

? ? ? ?

1. Convert P4 code into tree of program nodes (P4C IR).

2. Walk each branch and build program state.

3. Emit test at each leaf node, then backtrack (depth first).

State is fully independent.
• Can easily switch between program branches.

Every node can change subsequent program execution.
• Target extensions can implement their own control flow.
• Target can change the semantics of every program node (P4 Tables!).

Solution 1.1 - The P4Testgen Abstract Machine

Parser

Control

Table

Action1 NoAction

Deparser

Program nodes

Technical detail: We use continuations to implement this model.

Solution 1.2 - Pipeline Templates

• Each target must describe an architecture model.
• Packets can be dropped, recirculated, or modified.

• Current architecture model is a C++ DSL.
• Converted into custom control flow.
• Ideally, we would want to express this in P4 only.

• Useful side-effect: Reusability.
• There is significant overlap in network processing logic.
• Common code can be reused across targets.

Parser

Control

Deparser

$drop == true?

$recirculate == true?

$parser_error == true?

Emit packet
 at $port

Drop
packet

Architecture description

Challenge 2 - Dealing with Nondeterminism and Complexity

1. Some program state is undefined or random.
• We have no control over this state, and we can not know the generated output.
• What to do when a table reads on an uninitialized key field? How can we know we match?

2. Not all target functions (externs) can be modelled using first-order logic.
• Expressing hash functions is difficult and solving them can be very slow.
• But we still need a concrete mapping to avoid producing unreliable tests .

Solution 2.1 - Taint Tracking

1. Mark state affected by unreliable program segments tainted.
• Example: An assignment that reads from an uninitialized variable will taint the destination.

2. Resolve tainted reads as needed:
• Either further propagate taint or resolve taint directly at the program node.
• Example: An if statement with a tainted condition could execute either branch.

3. When generating a test…
• Use “don’t care” settings for unreliable outputs (e.g., tainted segments of the output packet).
• Discard the test wherever we have no choice (e.g., tainted output ports).

Solution 2.2 - Concolic Execution

• We could mark complicated externs tainted, but this will cause taint explosion.

• Use concolic execution instead.

Approach

1. Pick a set of random inputs for the function.
2. Calculate the function output using these inputs.

3. Encode these inputs and outputs as constraints for the SMT solver.

4. Check whether the solver can find a model.

5. Yes? Done.

6. No? Try again or abandon this particular branch.

Current Status

P4Testgen: Extensions

• v1model (BMv2)
• Supports the p4-constraints framework, which limits eligible table entries.

• tna (Tofino 1) and t2na (Tofino 2)
• Tofino has two parsers and deparsers.
• Tofino pre- and appends metadata to each packet.

• ebpf_model (linux kernel eBPF)
• ebpf can not modify packets, the model has no deparser.

P4Testgen: Evaluation

• Correctness is checked by running packet tests on respective model.
• In total, ~2000 program tests per commit.

• We execute on the P4C and Tofino program suites.
• Filed 25 bugs (9 in BMv2, 16 in Tofino).
• Most of the bugs are compiler bugs (some are incorrect transformations).

• Produces too many tests for Tofino switch.p4 flavours
• Stopped generating at >1,000,000 tests.
• P4Testgen produces too many branches because it handles many edge cases.

• We are working on making this practical.

P4Testgen: Future Work

• Path queries to produce targeted tests.
• Example: “Only produce tests that hit table ipv4_acl with a valid ipv4 packet.”

• Exploration strategies to maximize coverage.
• Example: “Pick the branch that contains unexplored program nodes.”

• Implement more extensions.
• Test P4Testgen’s limits in expressiveness.
• Explore targets with non-trivial control flow.
• Example: P4DPDK or general P4 FPGA targets.

P4Testgen: Conclusion

• Test-case oracle that produces input-output packet tests for P4 targets.

• Implements whole-programs semantics to model P4 target pipelines.
• Requires pipeline templates, taint analysis, concolic execution.

• Supported extensions: v1model (BMv2), tna/t2na (Tofino), and eBPF
• Initial results: Found ~25 bugs in the BMv2 and Tofino toolchains.

P4Testgen: Example
parser parser(...) {

 pkt.extract(hdr.eth);
}
control ingress(...) {

 action set_output_port(bit<9> out) {
 meta.output_port = out;

 }
 table forward_table {

 key = { h.eth.src: exact; }
 actions = { noop; // default action

 set_output_port; }
 }
 h.eth.src = 48w1;
 forward_table.apply();

}
control deparser(...) {

 pkt.emit(hdr.eth);
}

?

Input packet

Output packet

Table key

Chosen action

Input port

Output port

$eth.dst ++ $eth.src ++ $eth.type

$eth.dst ++ 48w1 ++ $eth.type

48w1

“set_output_port”

$out

$input_port

++ $payload

++ $payload

Action argument $out

Generated test

Required input

Required control plane configuration

Expected output

48w1 = 48 bit wide number with value 1

P4Testgen: Example - Solved
parser parser(...) {

 pkt.extract(hdr.eth);
}
control ingress(...) {

 action set_output_port(bit<9> out) {
 meta.output_port = out;

 }
 table forward_table {

 key = { h.eth.src: exact; }
 actions = { noop; // default action

 set_output_port; }
 }
 h.eth.src = 48w1;
 forward_table.apply();

}
control deparser(...) {

 pkt.emit(hdr.eth);
}

What if this
is a hash
function?

What if the
packet is
too short?

hash(h.eth.dst, out);

What if this
is a hash
function?

What if this
table does
not match?

Generated test

Input packet

Output packet

Table key

Chosen action

Input port

Output port

48w0 ++ 48w0 ++ 16w0

48w0 ++ 48w1 ++ 48w0

48w1

“set_output_port”

9w2

9w0

Action argument 9w2

Required input

Required control plane configuration

Expected output
++ 1500w0

++ 1500w0

48w1 = 48 bit wide number with value 1

