
Segment Routing Proxy Device Implemented
Using P4 on FPGA with Zero CPU Overhead

Mirek Walukiewicz
miroslaw.Walukiewicz@intel.com

Big Thanks to Pavel Benacek, Jan Kubalek and Bert Klaps from Intel

Segment Routing v6 overview

Seg 1

Seg 2

Seg 3

Seg 4

SRv6 Path1(S1, S2, S3)
SRv6 Path2(S1, S4, S3)

SRv6 Path1(S3, S2, S1)
SRv6 Path2(S3, S4, S1)

SRv6 aware device SRv6 aware device

SRv6 is a new powerful protocol with many emerging use-case.
It is considered as successor of well-known GTP-U protocol.
It is very useful for implementing 5G network slicing.

:1
:1

Seg 1

Seg 2

Seg 3

Seg 4

SRv6 Path1(S1, S2:1, S3)
SRv6 Path2(S1, S4, S3)

SRv6 Path1(S3, S2:1, S1)
SRv6 Path2(S3, S4, S1)

Non-SRv6 aware Firewall
Function 1 inside Seg 2

SRv6 Proxy function

SRv6 Proxy function SRv6 Proxy function

Non-SRv6 aware device Non-SRv6 aware device

Intel® N6000-PL
SmartNIC

Intel® N6000-PL
SmartNIC

Intel® N6000-PL
SmartNIC

:1

SRv6 Path3(S3, S2:1, S4)

SRv6 Path3(S4, S2:1, S3)

Remote Firewall use-case
available over SRv6

Software implementation of the SRv6-proxy

Application like Firewall

Linux kernel
Drivers

VPP and DPDK
Drivers

Foundational NIC
Like Intel(R) - E810CQDA2 –
Ethernet Network Adapter E810-CQDA2

SRv6 in SW consumes CPU cycles
whatever method is used to processing packets

Kernel

User space

Using P4 and FPGA based SmartNICs we can make SRv6-proxy system more efficient

SRv6
network

Why P4 for SRv6-proxy implementation using FPGA?

There are SmartNIC that can implement any reasonable networking pipeline.

P4 allows to define many classes of networking pipelines.

Programming FPGAs is complex, in general.

Very RTL skilled engineers are necessary to make FPGA projects.

FPGA projects with complexity like SRv6 proxy can take months to complete.

Using High Level Synthesis approach like P4 can reduce development time to weeks.

No RTL skilled engineers are required to complete such work on SmartNIC.

So do it with FPGA and P4

CP

HW platform for SRv6-proxy implementation in P4

CP – control plane running on HPS
A53 ARM cores

Clock
synchronization

Ethernet
Interfaces
10G/25G/100G

Non-SRv6
aware

Application
using SR-IOV

(vlan-port)

No CPU cores spent on SRv6 proxy processing! Everything done in HW.

DDR4 is a store for big tables

P4 pipeline

7

Generic
Srv6/VLAN

parser

Virtual port +
SRH cache

lookup

Port
ID

Remove SRH/
Add app VLAN

From Eth port

MAC/VLAN
IPv6 DA
lookup

Remove VLAN/
Add SRH

SRH Cache not matched

Send to host port

Add Exception hdr
Add Exception VLAN

Send to host port

Send to Ethernet port

From host port
App

VLAN

Remove Exception
Hdr

Exception initiated packet

App packet

Send to Ethernet port

Send to host port

Change app VLAN

Send to host port

Remove SRH/
Add GTP

Add app VLAN

Send to host port

Remove VLAN/
encode GTP

Add SRH

Miss
Exception

Send to Ethernet port

External DDR lookup in P4
With timestamp store

End.AD.DX2

End.AD.H.Encaps

End.AD.GTP6.E

End.AD.N6.D.Di

End.AD.GTP6.D.Di

End.AD.N6.E

SRH
Next hop
optional

Exception handler/Control plane is on HPS or host.

8

Host->Network Transformation Table

Biggest HW acceleration challenge –
Big exact match tables containing millions of entries
Table Key is simple, but actions parameters are very big due to SRv6 related definitions

9

Network->Host Transformation Table

Big challenge for HW acceleration: very big exact match tables (2M) and large size
keys due to full SRv6 header.

application

SRv6 test configurations - BIDIRECTIONAL TRAFFIC

10

AVF SRIOV

TCP/UDP/IP/MAC(inner) SRH/MAC(outer)

TCP/UDP/IP/MAC(inner)

SA: 2::
DA: 1::A1

NH: RH IPv6
Type: SRH
NH:59 (eth)

Segment List:
[0]: 1::A1

[1]: 4::

Next in chain
IP=2::

Next in chain
IP=4::

SA: MAC1
DA: MAC2

Etype=0800
IPv4/UDP

SA: 2::
DA: 4::

NH: RH IPv6
Type: SRH
NH:59 (eth)

Segment List:
[0]: 1::A2

[1]: 4::

SA: MAC1
DA: MAC2

Etype=0800
IPv4/UDP

SA: MAC1
DA: MAC2

Etype=0800
IPv4/UDP

SRv6-proxy offload

RX
SA: 4::
DA: 2::

NH: RH IPv6
Type: SRH
NH:59 (eth)

Segment List:
[0]: 1::A2

[1]: 2::

SA: MAC2
DA: MAC1

Etype=0800
IPv4/UDP

TX

SA: MAC2
DA: MAC1

Etype=0800
IPv4/UDP

RX TX

vEthernet0/0/0 = A1::
VLAN interface

vEthernet0/0/1 = A2::
VLAN interface

SA: 4::
DA: 1::A2

NH: RH IPv6
Type: SRH
NH:59 (eth)

Segment List:
[0]: 1::A2

[1]: 2::

SA: MAC2
DA: MAC1

Etype=0800
IPv4/UDP

TCP/UDP/IP/MAC(inner) SRH/MAC(outer)

RXTX

Sid =
1::A1

Sid =
1::A2

Intel® N6000-PL SmartNIC

Summary

Achievements to share:
• Full SRv6 proxy acceleration presented supporting millions of SRv6

paths using FPGA based SmartNIC
• No SW overhead for SRv6 processing by host

application connects the embedded NIC SR-IOV interface.

Learnings from the project:
• FPGA acceleration made by engineers without Verilog/VHDL knowledge thanks to use P4 translation.
• Possibility to demonstrate use of very large exact match tables in DDR4 difficult to achieve by ASICs.
• FPGA-based SmartNIC development is much faster with P4.

Thank You!
Mirek Walukiewicz

miroslaw.Walukiewicz@intel.com

