Effective DGA Family Classification using a Hybrid
Shallow and Deep Packet Inspection Technique on
P4 Programmable Switches

Ali AlSabeh
University of South Carolina, SC

Agenda

« Introduction

« Motivation

« Contribution

- Related Work

« Programmable switches

- Proposed system

- Implementation and Evaluation

« Conclusion and Discussion

Introduction

 Attackers often use a Command and Control (C2) server to establish communication and send
commands to infected machines for malicious acts

« Communication with the C2 server can either be static or dynamic
» Static communication: the C2 server has a fixed IP address and domain name
> Dynamic communication: the C2 server’s IP and/or domain name change frequently

- Domain Generation Algorithms (DGAs) are the de facto dynamic C2 communication method used
by a broad array of modern malware, including botnets, ransomware, and many others?

1“Dynamic Resolution: Domain Generation Algorithms.” [Online]. Available: https://tinyurl.com/44hz9hpm.

DGA Attacks

- DGAs evade domain-based firewall controls by
frequently changing the domain name selected from a
large pool of candidates

« The malware makes Domain Name System (DNS)
gueries in an attempt to resolve the IP addresses of
these generated domains

- Only a few IPs will typically be registered and associated
with the C2

« Non-Existent Domain (NXD) responses will coincide with
the remainder of the DNS queries, denoting that the
domain is not registered or the DNS server could not
resolve it

J

Random domains

bknllsnbfzqr.net >
cdzogoexis.tv »
hdozpcy . com »

J

Genuine English words

J

Permutation of English
words

salt—-amount-pattern .com—>
company-depend . com >
_ —>

hdozpcy . com

getadobeflashplayer.net—»
egtadobeflashplayer.net—>»

etadobgeflashplayer.net—>»

DGA-based malware

Open DNS resolvers

Existing Mitigation Strategies

- Most research efforts focus on DGA detection, i.e., they perform binary classification in order to
segregate DGAs from benign traffic

- Approaches rely on contextual network traffic analysis (context-aware) or domain name analysis,
without considering network traffic (context-less)

In addition to DGA detection, it is helpful to classify DGA malware based on the family (Trojan,
Backdoor, etc.)

» The multiclass classification of DGA families allows security professionals to assess the severity of the
exploit and apply the appropriate remediation policies in the network!

1 A. Drichel, N. Faerber, and U. Meyer, “First Step Towards Explainable DGA Multiclass Classification,” in The 16th International 5
Conference on Availability, Reliability and Security, pp. 1-13, 2021.

Motivation

- Context-aware approaches analyze the network traffic behavior to fingerprint DGAs
> Slow since they typically analyze batches of traffic offline
- Context-less approaches obtain high accuracy with advanced ML models

> Require a general-purpose CPU/GPU to process and analyze the domain names, which could create a
bottleneck due to the ubiquitous use of DNS on the Internet

- There is a need for a system that uses context-aware and context-less features to classify DGAs
without degrading high-throughput networks

Contribution

« Proposing a novel P4 scheme that uses a hybrid context-aware and context-less feature
extraction technique entirely in the data plane

- Implementing an in-network Deep Packet Inspection (DPI) on Intel’s Tofino ASIC that extracts and
analyzes the entirety of the domain name within 3 microseconds

- Evaluating the proposed approach on 50 DGA families collected by crawling GBs of malware
samples

- Highlighting the effectiveness of the proposed work in terms of accuracy, performance

Related Work

- DGA binary and multiclass classification

> [1, 2] use NetFlow and an SDN controller to collect
context-aware features

> [3] uses ML models on context-aware and context-less
features on batches of DNS traffic

> [4-7] use machine learning trained on features of the
domain name (statistical, structural, linguistic, etc.)

« DGA multiclass classification

» EXPLAIN [8] and [9] extract numerous features from a
domain name to classify DGAs

A h DGA Context- | Context- | FE.
pproac multiclass. | less aware latency

[1] v minutes

[2] v seconds e

EXPOSURE [3] v v minutes e

FANCI [4] v ms e

ANCS [5] v ms e

(6] v ms e

(7] v ms e

EXPLAIN [8] Vg v 100°s s ®

[9] v v ms e

Our approach | v | vV | v | 2-3 pus x|

* : ASIC processing

e : CPU/GPU processing

Overview P4 Switches

- P4 switches permit programmer to program the data plane
- Customized packet processing

« High granularity in measurements

« Per-packet traffic analysis and inspection

- Stateful memory processing

- If the P4 program compiles, it runs on the chip at line rate

state parse_ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
TYPE_IPV4: parse_ipvd;
default: accept;
¥
¥

state parse_ipv4 {
packet.extract(hdr.ipv4);
verify(hdr.ipv4.ihl >= 5, error.IPHeaderTooShort);
transition select(hdr.ipv4.ihl) {
5 1 accept;
default : parse_ipv4_option;
¥
¥

P4 code

Programmable chip

Proposed System

« The P4 PDP switch collects and stores the context-
aware features of the hosts

« When an NXD response is received, the switch
performs DPI on the domain name to extract its
context-less features

« The switch sends the collected features to the
control plane

- The control plane runs the intelligence to classify
the DGA family and initiate the appropriate
incidence response

Intelligence

- Receive stateful data from the switch
{_|- Run ML classifier to profile DGA
families

Trigger event (NXD response) I J Action based on the exploit

P4 pipeline
Context-less Context-aware
features (all NXDs) features (all IP packets)

DPI for parsing Extracting Shallow Storing the

> and extracting structural and %: inspecting and network
the entire statistical features monitoring of features in

domain name using MAT the traffic registers

— ” <«
1...1 L

DNS resolver

External network

P4 PDP switch

Il NXD response

DGA-infected
host

Internal network
| IP packets

10

Proposed System

- Context-aware features

> It characterizes the network behavior of DGAs while they attempt to contact the C2 server
» For each host in the network, the following features are stored in the data plane:

= Number of IPs contacted

= Number of DNS requests made

= Time it takes to for the first NXD response to arrive

= |nter-arrival Time (IAT) between subsequent NXD responses

> Collected in the data plane without involving the control plane (until an NXD response is

received)

11

Proposed System

- Context-less features
> It computes the bigram of the domain name; a bigram model may suffice to predict whether a domain
name is a legitimate human readable domain
» Other domain name attributes include length of the domain name and number of subdomains
» For each NXD response received, the data plane extracts the following features from the domain name

= Randomness of a domain name d according to its bigram frequency

score (d) = Z Z 2 Where /5 s the frequency of the bigram

VY subdomain s € d \V bigram b € s b in the subdomain s

n u n n u ” llg I ” ((I e” o S”
I

» Example: bigrams of “google” are: “Sg”, “go”, “00”, “og”, ,

12

P4 Implementation

- The parser parses DNS packets in the data plane

> Packet recirculation maybe required for certain
domain names

» To compute the randomness of a domain, each
bigram b will be applied to a Match-Action Table
(MAT)

» The frequencies of the bigrams are computed offline
using the English dictionary; thus, the lower the
score the more it is considered random

» The MATs are pre-populated by the control plane
with the frequency of each bigram

Algorithm 1: Pseudocode of the P4 code

1 Parser():

2

e oA W

Parse_headers(ETH,IP,UDP,DNS)

if pkt == IPvd && DN S.type == NXD then
partl < pkt.extract(p.domain_labell.partl) // Extract 2° bytes
part2 + pkt.extract(p.domain_labell.part2) // Extract 2! bytes
partd < pkt.extract(p.domain_labell.partd) // Extract 22 bytes

witchIngress():
table bigram_tabell
key : partl;
actions : add_bigram_val;

for =0 1 2do

if part2'.isValid() then

L Apply (2! — 1) bigrams of part2?
if part2'—l.isValid() && part_Q".i‘S'V(zli_d() then
l_ Calculate the bigram between part2'~! and part2
if domain.is_fully_parsed == False then

[_ recirculate();

else

[_ check validity TLD();
cale_domain_length();

set_invalid(part2');

witchEgress():

register unique_ips_contacted,
register nb_DN S _requests;
register unique_N X Ds;

unique_ips_contacted.update();
nb_DN S _requests.update();

unique_N X Ds.update();

13

Evaluation

« Dataset

» Hundreds of GB of malware samples from cyber security websites were crawled
» Each sample was instrumented in an isolated environment to capture its network traffic behavior

> To collect DGA-based malware, only samples that receive NXD responses containing domain names
generated by DGAs (based on DGArchive!) are considered

» The resulting dataset includes 1,311 samples containing 50 DGA families
- Experimental setup
» The collected dataset was used to train ML models offline on a general-purpose CPU
> 80% of data was used for training and 20% for testing
> 5-fold Cross Validation (CV) was used to avoid overfitting the model
> Weights were assigned for every class (DGA family) to deal with class imbalance

14

D. P LOHMANN, “DGArchive.” [Online]. Available: https://tinyurl. com/ycéwhwrc.

Evaluation

« Accuracy (Acc), F1 score, and Precision (Prec) of different ML classifiers during the first 8 NXD
responses received were reported

- The Random Forest (RF) model performed best
« The Accuracy (Acc) starts at 92% from the first NXD response received and reaches 95% by the 8t NXD

response

NXD count RF SVM MLP LR GNB

Acc | F1 | Prec Acc | F1 | Prec Acc | F1 | Prec Acc | F1 | Prec Acc | F1 | Prec
NXD 1 0.923 | 0907 | 0.902 | 0.872 | 0.856 | 0.847 | 0.87 0.843 | 0.829 | 0.716 | 0.679 | 0.667 | 0.726 | 0.688 | 0.688
NXD 2 0951 | 0943 | 0943 | 0.899 | 0.893 | 0.893 | 0.904 | 0.897 | 0.9 0.76 0.741 | 0.747 | 0.727 | 0.701 | 0.707
NXD 3 0964 | 0958 | 0964 | 0918 | 0913 | 0914 | 0.924 | 0914 | 0.912 | 0.767 | 0.74 0.743 | 0.649 | 0.668 | 0.732
NXD 4 0966 | 0961 | 0963 | 0.906 | 0.905 | 0.912 | 0.916 | 0.909 | 0.915 | 0.79 0.765 | 0.758 | 0.633 | 0.635 | 0.692
NXD 5 0.97 0.966 | 0967 | 0915 | 0.91 0911 | 0919 | 0.91 0.907 | 0.77 0.735 | 0.746 | 0.604 | 0.615 | 0.689
NXD 6 0975 | 0972 | 0973 | 0914 | 0911 | 0912 | 0.922 | 0.915 | 0918 | 0.794 | 0.767 | 0.783 | 0.617 | 0.627 | 0.716
NXD 7 0977 | 0976 | 0979 | 0.92 0915 | 0915 | 0929 | 0924 | 0.93 0.799 | 0.771 | 0.78 0.61 0.613 | 0.714
NXD 8 0.98 0979 | 0981 | 0917 | 0912 | 0914 | 0.93 0.923 | 0921 | 0.764 | 0.73 0.735 | 0.631 | 0.618 | 0.65

15

Evaluation

* Performance of the proposed approach amid varying
NXD responses on a subset of samples grouped by
their attack category

* The accuracy of critical attacks, such as ransomware,
is high from the first NXD response

* The majority of attacks are classified with high
confidence by the 5" NXD response

Trojans

Back-
doors

Bots

Ransom-
ware

Spyware

Worm

NXD1 NXD2 NXD3 NXD4 NXD5 NXD6 NXD7 NXD8

Accuracy

Feature extraction time of our work and EXPLAIN

EXPLAIN’s available source code was tested on a
general-purposed CPU with 64 GB RAM, 2.9 GHz
processor with 8 cores

------ P4 Switch — EXPLAIN
u=2.8860us 1 =9233.02us
0=0.6704us 0=456.28us

1.0 A

0.8

0.6

CDF

0.4 1

0.2

J

0 2500 5000 7500 10000 12500 15000
Feature extraction time [us] 16

Evaluation

« Our approach only recirculates NXD responses

* NXDs account for 0.01% of the traffic in campus traffic!

* The rest of the traffic undergoes shallow packet inspection (few hundreds of nanoseconds)

« Number of recirculations for domain names in DGArchive

* 80% of the domains require a maximum of four recirculations

10 - -_,_I—"
0.8

0.6 1

CDF

0.4 1

0.2 1

0.0 1 |
2 3 4 5 6 7 8 9
Number of Recirculations for DGArchive domain names

1 Garcia, Sebastian, et al.

"An empirical comparison of botnet detection methods." computers & security 45 (2014): 100-123.

17

Conclusion and Discussion

- In this work, we propose a hybrid feature extraction technique relying on context-aware and
context-less features to classify DGA families

- Context-aware features characterize the network traffic behavior of the DGAs and require
shallow packet inspection (no degradation to the throughput)

- Context-less features study the statistical and structural characteristics of the domain names
relating to NXDs using DPI

- With 50 DGA families analyzed, the proposed approach achieves 92% accuracy with RF classifier
from the first NXD response and reaches up to 98% by the 8" NXD response

- In the future, we aim to explore other techniques that are robust against encrypted DNS traffic, in
addition to collecting more DGA families

18

Acknowledgement

- Thanks to the National Science Foundation (NSF)

- Activities in the Cl Lab at the UofSC are supported by NSF, Office of Advanced Cyberinfrastructure

(OAC), awards 2118311 and 2104273

19

References

[1] M. Grill, I. Nikolaev, V. Valeros, and M. Rehak, “Detecting DGA Malware using NetFlow,” in 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM), pp. 1304-1309, IEEE, 2015.

[2] Y. luchi, Y. Jin, H. Ichise, K. lida, and Y. Takai, “Detection and Blocking of DGA-Based Bot Infected Computers by Monitoring NXDOMAIN Responses,” in
2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and
Scalable Cloud (EdgeCom), pp. 82— 87, IEEE, 2020.

[3] L. Bilge, S. Sen, D. Balzarotti, E. Kirda, and C. Kruegel, “Exposure: A passive DNS Analysis Service to Detect and Report Malicious Domains,” ACM
Transactions on Information and System Security (TISSEC), vol. 16, no. 4, pp. 1-28, 2014.

[4] S. Schuppen, D. Teubert, P. Herrmann, and U. Meyer, “FANCI: Feature-based Automated NXDomain Classification and Intelligence,” in 27th USENIX
Security Symposium (USENIX Security 18), pp. 1165—- 1181, 2018.

[5] L. Fang, X. Yun, C. Yin, W. Ding, L. Zhou, Z. Liu, and C. Su, “ANCS: Automatic NXDomain Classification System Based on Incremental Fuzzy Rough Sets
Machine Learning,” IEEE Transactions on Fuzzy Systems, vol. 29, no. 4, pp. 742-756, 2020.

[6] K. Highnam, D. Puzio, S. Luo, and N. R. Jennings, “Real-time Detection of Dictionary DGA Network Traffic Using Deep Learning,” SN Computer Science, vol.
2,no. 2, pp. 1-17, 2021.

[7] B. Yu, D. L. Gray, J. Pan, M. De Cock, and A. C. Nascimento, “Inline DGA Detection with Deep Networks,” in 2017 IEEE International Conference on Data
Mining Workshops (ICDMW), pp. 683—-692, IEEE, 2017.

[8] A. Drichel, N. Faerber, and U. Meyer, “First Step Towards Explainable DGA Multiclass Classification,” in The 16th International Conference on Availability,
Reliability and Security, pp. 1-13, 2021.

[9] T. A. Tuan, H. V. Long, and D. Taniar, “On Detecting and Classifying DGA Botnets and their Families,” Computers & Security, vol. 113, p. 102549, 2022.
20

Thank You!

Ali AlSabeh
aalsabeh@email.sc.edu

21

