
P4 Portable NIC Architecture (PNA)
version 0.5

The P4 Language Consortium

2021-05-18

Abstract

P4 is a domain-specific language for describing howpackets are processed by a network data plane.
AP4programcomprisesanarchitecture,whichdescribes the structureandcapabilitiesof thepipeline,
andauserprogram,whichspecifies the functionalityof theprogrammableblockswithin thatpipeline.
The Portable NIC Architecture (PNA) is an architecture that describes the structure and common
capabilities of network interface controller (NIC) devices that process packets going between one
or more interfaces and a host system.

Contents
1. Introduction 2

1.1. Packet processing in the network to host direction . 3
1.2. Message processing . 4
1.3. Packet processing in the host to network direction . 4
1.4. PNA P416 architecture . 5

2. Naming conventions 6
3. Packet paths 6
4. PNA Data types 7

4.1. PNA type definitions . 7
4.1.1. PNA type definition code excerpt . 7
4.1.2. PNA port types and values . 9

4.2. PNA supported metadata types . 9
4.3. Match kinds . 11
4.4. Data plane vs. control plane data representations . 11

5. Programmable blocks 11
6. Packet Path Details 12

6.1. Initial values of packets processed bymain parser . 12
6.1.1. Initial packet contents for packets from ports . 12
6.1.2. Initial packet contents for packets looped back from host-to-network path 12

6.2. Behavior of packets after pre block is complete . 13
6.3. Initial values of packets processed in network-to-host direction bymain block 13

6.3.1. Initial packet contents for normal packets . 13
6.3.2. Initial packet contents for recirculated packets . 13

6.4. Behavior of packets after main block is complete in network-to-host direction 13

1

6.5. Initial values of packets processed in host-to-network direction bymain block 13
6.5.1. Initial packet contents for normal packets . 13
6.5.2. Initial packet contents for recirculated packets . 13
6.5.3. Initial packet contents for packets loopedbackafter network-to-hostmainprocessing 13

6.6. Behavior of packets after main block is complete in host-to-network direction 13
6.7. Contents of packets sent out to ports . 13
6.8. Functions for directing packets . 13

6.8.1. Extern function send_to_port . 13
6.9. Packet Mirroring . 14
6.10. Packet recirculation . 16

7. PNA Extern Objects 16
7.1. Restrictions on where externs may be used . 16

8. PNA Table Properties 17
8.1. Tables with add-on-miss capability . 18
8.2. Table entry timeout notification . 18

9. Timestamps 20
10. Atomicity of control plane API operations 20
A. Appendix: Open Issues 20
B. Appendix: Rationale for design 20

B.1. Why a common pipeline, instead of separate pipelines for each direction? 20
B.2. Why separate programmable pre blocks for pre-decryption packet processing? 20
B.3. Is it inefficient to have the MainParser redo work? . 20

C. Appendix: Packet path figures 21
C.1. Network to host . 21
C.2. Network to host with mirror copy to different host . 21
C.3. Host to network . 21
C.4. Host to network with mirror copy to a different host . 23
C.5. Host to host . 23
C.6. Port to port . 23

D. Appendix: Packet ordering 25
E. Appendix: Revision History 25

1. Introduction
Note that this document is still a working draft. Significant changes are expected to be made before
version 1.0 of this specification is released.

The Portable NIC Architecture (PNA) is P4 architecture that defines the structure and common ca-
pabilities for network interface controller (NIC) devices. PNA comprises twomain components:

1. A programmable pipeline that can be used to realize a variety of different “packet paths” going
between the various ports on the device (e.g., network interfaces or the host system it is attached
to), and

2. A library of types (e.g., intrinsict and standardmetadata) andP416 externs (e.g., counters,meters,
and registers).

2

PNA is designed tomodel the common features of a broad class of NIC devices. By providing standard
APIs and coding guidelines, the hope is to enable developers towrite programs that are portable across
multiple NIC devices that are conformant to the PNA1.

The Portable NIC Architecture (PNA) Model has four programmable P4 blocks and several fixed-
function blocks, as shown in Figure 1. The behavior of the programmable blocks is specified using P4.
The network ports, packet queues, and (optional) inline extern blocks are fixed-function blocks that
can be configured by the control plane, but are not intended to be programmed using P4.

M
es

sa
ge

 P
ro

ce
ss

in
g

Host-to-net
inline extern

N
et

w
or

k
Po

rt
s

Ho
st

 1

Programmed in P4

Fixed function

Ho
st

 N
…

Main Parser

Main control
Main Deparser

FROM_HOST

TO_HOST

FROM_NET

TO_NET

Pre control

N
et

-t
o-

ho
st

in

lin
e

ex
te

rn

Planned Extension

Figure 1. Programmable NIC Architecture Block Diagram

1.1. Packet processing in the network to host direction
Packets arriving fromanetwork port first go through a MainParser and a PreControl. The PreControl can
optionally perform table lookups. Its purpose is to determine whether a packet requires processing by
the net-to-host inline extern block.

For example, the net-to-host inline extern block may perform decryption of packet payloads ac-
cording to the IPsec protocol. In this case, the main parser and pre control would be programmed to
identify whether the packet was encrypted using IPsec, and if so, what security association it belongs
to. For instance, the PreControl code might drop the packet if the packet had an IPsec header, but
one or more P4 table lookups determined that the packet does not belong to any security association
that had been established by the control plane software. Note that the net-to-host inline extern block

1Of course, given the tight hardware resource constraints on NIC devices, there is no promise that a given P4
program that compiles on one device will also compile on another device. However, it should at least be the case
that those P4 programs that are able to compile on multiple NIC devices should process packets as described in this
document.

3

may modify the entire payload of the received packet—e.g., decrypting the encrypted portion of the
payload. Hence, the resulting packet might contain not only the original headers that were parsed by
the first invocation of the MainParser, but also headers that could not have been parsed as they were
previously encrypted. See section B.3 for additional details.

After decryption, the MainParser canperform the full parsing required for implementing thedesired
data plane functionality.

The MainControl is typicallywhere thebulk of codewouldbewritten for processingpackets. It trans-
formsheaders, updates stateful elements like counters,meters, and registers, andoptionally associates
additional user-definedmetadata with the packet. The MainDeparser serializes the headers back into a
packet that can be sent onwards.

After the MainDeparser, the packet may either: proceed to the message processing part of the NIC,
and then typically on to the host system, or turn around and head back towards the network ports.
This enables on-NIC processing of port-to-port packets without ever traversing the host system.

Figure 1 shows multiple hosts. Some NICs support PCI Express connections to multiple host CPU
complexes. It is also common for NICs to have an array of one or more CPU cores inside of the NIC
device itself, and these can be the target for packets received from the network, and/or the source of
packets sent to thenetwork, just as the other hosts canbe. For the purposes of the PNA, suchCPUcores
are considered as another host.

1.2. Message processing
The focus in the current version of this specification is on the four P4-programmable blocksmentioned
above. The details of how one can use P4 to program the message processing portion of a NIC is left
as a future extension of this specification. While there are options for exactly what packet processing
functions canbeperformed in the four primary blocks described above, versus themessageprocessing
block, the division is expected to be:

• Theprimaryprogrammableblocksdeal solelywith individual networkpackets,whichareatmost
one network maximum transmission unit (MTU) in size.

• Themessageprocessingblock is responsible for convertingbetween largemessages inhostmem-
ory and network size packets on the network, and for dealing with one or more host operating
systems, drivers, and/or message descriptor formats in host memory.

For example, in its role of converting between large messages and network packets in the host-to-
network direction, message processing would implement features like large send offload (LSO), TCP
segmentation offload (TSO), and Remote Direct Memory Access (RDMA) over Converged Ethernet
(RoCE). In the network-to-host direction it would assist in such features as large receive offload (LRO)
and RoCE.

In its role of handlingdifferent kinds of operating systems, drivers, andmessagedescriptor formats,
themessage processing blockmay deal with one or more of the following standards: - VirtIO - SR-IOV

Anotherpotential criteria for dividingpacket processing functionality betweenmessageprocessing
and the rest of the NIC is for division of control plane responsibilities. For example, in some network
deployments theNICmessageprocessingblockconfiguration is tightly coupledwith thehostoperating
system, whereas the MainControl is controlled by network-focused control plane software.

4

1.3. Packet processing in the host to network direction
Messages originating in one of the hosts are segmented into networkMTU size packets (if the host has
not already done so) in the message processing block, and are then sent to the main block for further
processing.

The same MainParser, PreControl, MainControl, and MainDeparser that process packets from the net-
work are also used to process packets from the host. PNA was designed this way for two reasons:

• It is expected that inmany cases, the packet processing in both directionswill havemany similar-
ities between them. Writing common P4 code for both eliminates code duplication that would
occur if the code for each direction was written separately.

• Having a single MainControl in the P4 language enables tables and externs such as counters and
registers to be instantiated once, and shared by packets being processed in both directions. The
hardware of many NICs supports this design, without having to instantiate a physically separate
table for each direction. Especially for large tables used by packet processing in both directions,
this approach can significantly reduce the memory required. It is also critical for some stateful
features (e.g. those using the table add-on-miss capability) to access the same table in memory
when processing packets in either direction.

After finishingprocessing in the MainControl, the packetmaybe enqueued in oneof several queues (the
number of such queues is target specific). After queueing theremay be a host-to-net inline extern. For
example, the host-to-net inline extern block may perform encryption of packet payloads according to
the IPsec protocol. In this case, the MainControlwould indicate that this processing should be form via
assigning appropriate values to standardmetadata fields created for this purpose.

Next, the two primary choices for the next place the packet will go are:

• proceed to be emitted out of one of the network ports, or
• turn around and head back towards the host system, which enables on-NIC processing of VM-

to-VM or host-to-host packets (i.e., on a systemwith multiple hosts).

The choices of which queue to use, what kind of processing to perform in the host-to-net inline extern,
which network port to go to, or whether to loop back, are all controlled from the P4 code running in the
MainControl block, via extern functions defined by this PNA specification.

Note that packets processed in themainblock cannot “changedirection” internally. That is, packets
from the networkmust go out the to-host path, and packets from the host must go out the to-net path.
There are loopback paths outside of the main block as shown in Figure 1.

1.4. PNA P416 architecture
A programmer targeting the PNA is required to provide P4 definitions for each of the programmable
blocks in the pipeline (see section 5). The programmable block inputs and outputs are parameterized
on the types of user defined headers andmetadata. The top-level PNA program instantiates a package
named main with the programmable blocks passed as arguments (see Section TBD for an example).
Note that the main package is not to be confused with the MainControl.

A P4 programmer wishing to maximize the portability of their program should follow several gen-
eral guidelines:

• Donot use undefined values in away that affects the resulting output packet(s), or for side effects
such as updating Counter, Meter or Register instances.

5

• Use as few resources as possible, e.g. table search key bits, array sizes, quantity of metadata as-
sociated with packets, etc.

This document contains excerpts of several P416 programs that use the pna.p4 include file and demon-
strate features of PNA. Source code for the complete programs can be found in the official repository
containing the PNA specification2.

2. Naming conventions
In this document we use the following naming conventions:

• Types are named using CamelCase followed by _t. For example, PortId_t.
• Control types and extern object types are named using CamelCase. For example IngressParser.
• Struct typesarenamedusing lowercasewords separatedby _ followedby _t. For example pna_ingress_input_metadata_t.
• Actions, externmethods, extern functions, headers, structs, and instancesof controls andexterns

start with lower case and words are separated using _. For example send_to_port.
• Enum members, const definitions, and #define constants are all caps, with words separated by

_. For example PNA_PORT_CPU.

Architecture specific metadata (e.g. structs) are prefixed by pna_.

3. Packet paths
Figure 2 shows all possible paths for packets that must be supported by a PNA implementation. An
implementation is allowed to support paths for packets that are not described here.
TBD: Create another figure with names for the paths.
Table 1 showswhat can happen to a packet as a result of a single time being processed through the four
programmable blocks of the packet processing part of PNA, referred to here as “main”.

Note that each mirrored packet that results from mirror_packet operations will have its own next
place that it will go to be processed, independent of the original packet, and independent of any other
mirror copies made of the same original packet.

4. PNA Data types
4.1. PNA type definitions
Each PNA implementation will have specific bit widths in the data plane for the types shown in the
code excerpt of Section 4.1.1. These widths are defined in the target specific pna.p4 include file. They
are expected to differ from one PNA implementation to another3.

For each of these types, the P4 Runtime API4 may use bit widths independent of the targets. These
widths are defined by the P4 Runtime API specification, and they are expected to be at least as large as

2https://github.com/p4lang/pna in directory examples. Direct link: https://github.com/p4lang/pna/tree/
master/examples

3It is expected that pna.p4 include files for different targets will be nearly identical to each other. Besides the
possibility of differing bit widths for these PNA types, the only expected differences between pna.p4 files for different
targets would be annotations on externs, etc. that the P4 compiler for that target needs to do its job.

4The P4Runtime Specification can be found here: https://p4.org/specs

6

https://github.com/p4lang/pna
https://github.com/p4lang/pna/tree/master/examples
https://github.com/p4lang/pna/tree/master/examples
https://p4.org/specs

M
es

sa
ge

 P
ro

ce
ss

in
g

Host-to-net
inline extern

N
et

w
or

k
Po

rt
s

Ho
st

 1
Ho

st
 N

…

Main Parser

Main control
Main Deparser

FROM_HOST

TO_HOST

FROM_NET

TO_NET

Pre control

N
et

-t
o-

ho
st

in

lin
e

ex
te

rn

Port loopback Host
loopback

Net-to-host
recirculate

Host-to-net
recirculate

Programmed in P4

Fixed function
Planned Extension

Figure 2. Packet Paths in PNA

the corresponding InHeader_t typebelow, such that theyholda value for any target. All PNA implemen-
tations must use data plane sizes for these types no wider than the corresponding InHeader_t-defined
types.

4.1.1. PNA type definition code excerpt

/* These are defined using `typedef`, not `type`, so they are truly

* just different names for the type bit<W> for the particular width W

* shown. Unlike the `type` definitions below, values declared with

* the `typedef` type names can be freely mingled in expressions, just

* as any value declared with type bit<W> can. Values declared with

* one of the `type` names below _cannot_ be so freely mingled, unless

* you first cast them to the corresponding `typedef` type. While

* that may be inconvenient when you need to do arithmetic on such

* values, it is the price to pay for having all occurrences of values

* of the `type` types marked as such in the automatically generated

* control plane API.

*

* Note that the width of typedef <name>Uint_t will always be the same

* as the width of type <name>_t. */

typedef bit<unspecified> PortIdUint_t;

typedef bit<unspecified> InterfaceIdUint_t;

7

Processed Resulting
Description next by packet(s)

packet from main, with Zero or more mirrored
network port direction packets, plus at most
packet from NET_TO_HOST one of: a net-to-host
net-to-host recirculated packet,
recirculate or one to-host packet.
packet from
port loopback
packet from main, with Zero or more mirrored
message processing direction packets, plus at most
packet from HOST_TO_NET one of: a host-to-net
host-to-net recirculated packet,
recirculate or one to-net packet.
packet from
host loopback

Table 1. Result of packet processed one time by main.

typedef bit<unspecified> MulticastGroupUint_t;

typedef bit<unspecified> MirrorSessionIdUint_t;

typedef bit<unspecified> MirrorSlotIdUint_t;

typedef bit<unspecified> ClassOfServiceUint_t;

typedef bit<unspecified> PacketLengthUint_t;

typedef bit<unspecified> MulticastInstanceUint_t;

typedef bit<unspecified> TimestampUint_t;

typedef bit<unspecified> FlowIdUint_t;

typedef bit<unspecified> ExpireTimeProfileIdUint_t;

typedef bit<unspecified> PassNumberUint_t;

typedef bit<unspecified> SecurityAssocIdUint_t;

@p4runtime_translation("p4.org/pna/v1/PortId_t", 32)

type PortIdUint_t PortId_t;

@p4runtime_translation("p4.org/pna/v1/InterfaceId_t", 32)

type InterfaceIdUint_t InterfaceId_t;

@p4runtime_translation("p4.org/pna/v1/MulticastGroup_t", 32)

type MulticastGroupUint_t MulticastGroup_t;

@p4runtime_translation("p4.org/pna/v1/MirrorSessionId_t", 16)

type MirrorSessionIdUint_t MirrorSessionId_t;

@p4runtime_translation("p4.org/pna/v1/MirrorSlotId_t", 8)

type MirrorSlotIdUint_t MirrorSlotId_t;

@p4runtime_translation("p4.org/pna/v1/ClassOfService_t", 8)

type ClassOfServiceUint_t ClassOfService_t;

@p4runtime_translation("p4.org/pna/v1/PacketLength_t", 16)

8

type PacketLengthUint_t PacketLength_t;

@p4runtime_translation("p4.org/pna/v1/MulticastInstance_t", 16)

type MulticastInstanceUint_t MulticastInstance_t;

@p4runtime_translation("p4.org/pna/v1/Timestamp_t", 64)

type TimestampUint_t Timestamp_t;

@p4runtime_translation("p4.org/pna/v1/FlowId_t", 32)

type FlowIdUint_t FlowId_t;

@p4runtime_translation("p4.org/pna/v1/ExpireTimeProfileId_t", 8)

type ExpireTimeProfileIdUint_t ExpireTimeProfileId_t;

@p4runtime_translation("p4.org/pna/v1/PassNumber_t", 8)

type PassNumberUint_t PassNumber_t;

@p4runtime_translation("p4.org/pna/v1/SecurityAssocId_t", 64)

type SecurityAssocIdUint_t SecurityAssocId_t;

typedef error ParserError_t;

const InterfaceId_t PNA_PORT_CPU = (PortId_t) unspecified;

const MirrorSessionId_t PNA_MIRROR_SESSION_TO_CPU = (MirrorSessiontId_t) unspecified;

4.1.2. PNA port types and values

There are two types defined by PNA for holding different kinds of ports: PortId_t and InterfaceId_t.
The type PortId_tmust be large enough in the data plane to hold one of these values:

• a data plane id for one network port
• a data plane id for one vport

Asoneexample, aPNA targetwith fourEthernetnetworkports could choose touse the values 0 through
3 to identify the network ports, and the values 4 through 1023 to identify vports.

PNAmakesno requirement that thenumeric values identifyingnetworkportsmust be consecutive,
nor for vports. PNAonly requires that for every possible numeric value xwith type PortId_t, exactly one
of these statements is true:

• x is the data plane id of one network port, but not any vport
• x is the data plane id of one vport, but not any network port
• x is the data plane id of no port, neither a network port nor a vport

4.2. PNA supported metadata types

enum PNA_PacketPath_t {

// TBD if this type remains, whether it should be an enum or

// several separate fields representing the same cases in a

// different form.

FROM_NET_PORT,

9

FROM_NET_LOOPEDBACK,

FROM_NET_RECIRCULATED,

FROM_HOST,

FROM_HOST_LOOPEDBACK,

FROM_HOST_RECIRCULATED

}

struct pna_pre_input_metadata_t {

PortId_t input_port;

ParserError_t parser_error;

PNA_Direction_t direction;

PassNumber_t pass;

bool loopedback;

}

struct pna_pre_output_metadata_t {

bool decrypt; // TBD: or use said==0 to mean no decrypt?

// The following things are stored internally within the decrypt

// block, in a table indexed by said:

// + The decryption algorithm, e.g. AES256, etc.

// + The decryption key

// + Any read-modify-write state in the data plane used to

// implement anti-replay attack detection.

SecurityAssocId_t said;

bit<16> decrypt_start_offset; // in bytes?

// TBD whether it is important to explicitly pass information to a

// decryption extern in a way visible to a P4 program about where

// headers were parsed and found. An alternative is to assume

// that the architecture saves the pre parser results somewhere,

// in a way not visible to the P4 program.

}

struct pna_main_parser_input_metadata_t {

// common fields initialized for all packets that are input to main

// parser, regardless of direction.

PNA_Direction_t direction;

PassNumber_t pass;

bool loopedback;

// If this packet has direction NET_TO_HOST, input_port contains

// the id of the network port on which the packet arrived.

// If this packet has direction HOST_TO_NET, input_port contains

// the id of the vport from which the packet came

10

PortId_t input_port; // network port id

}

struct pna_main_input_metadata_t {

// common fields initialized for all packets that are input to main

// parser, regardless of direction.

PNA_Direction_t direction;

PassNumber_t pass;

bool loopedback;

Timestamp_t timestamp;

ParserError_t parser_error;

ClassOfService_t class_of_service;

// See comments for field input_port in struct

// pna_main_parser_input_metadata_t

PortId_t input_port;

}

struct pna_main_output_metadata_t {

// common fields used by the architecture to decide what to do with

// the packet next, after the main parser, control, and deparser

// have finished executing one pass, regardless of the direction.

ClassOfService_t class_of_service; // 0

}

4.3. Match kinds
TBD: Consider simply referencing the corresponding section of the PSA specification for this, unless
we want to have something different in PNA.

4.4. Data plane vs. control plane data representations

5. Programmable blocks
The following declarations provide a template for the programmable blocks in the PNA. The P4 pro-
grammer is responsible for implementing controls thatmatch these interfaces and instantiate them in
a package definition.

It uses the sameuser-definedmetadata type IMandheader type IH for all ingressparsers andcontrol
blocks. The egress parser and control blocks can use the same types for those things, or different types,
as the P4 program author wishes.

control PreControlT<PH, PM>(

in PH pre_hdr,

inout PM pre_user_meta,

11

in pna_pre_input_metadata_t istd,

inout pna_pre_output_metadata_t ostd);

parser MainParserT<PM, MH, MM>(

packet_in pkt,

//in PM pre_user_meta,

out MH main_hdr,

inout MM main_user_meta,

in pna_main_parser_input_metadata_t istd);

control MainControlT<PM, MH, MM>(

//in PM pre_user_meta,

inout MH main_hdr,

inout MM main_user_meta,

in pna_main_input_metadata_t istd,

inout pna_main_output_metadata_t ostd);

control MainDeparserT<MH, MM>(

packet_out pkt,

in MH main_hdr,

in MM main_user_meta,

in pna_main_output_metadata_t ostd);

package PNA_NIC<PH, PM, MH, MM>(

MainParserT<PM, MH, MM> main_parser,

PreControlT<PH, PM> pre_control,

MainControlT<PM, MH, MM> main_control,

MainDeparserT<MH, MM> main_deparser);

6. Packet Path Details
Refer to section 3 for the packet paths provided by PNA.
TBD: Need to decide where multicast replication can occur, and in what conditions.
TBD: Need to decide where packet mirroring occurs, and in what conditions, and how the mirrored
packets differ from the originals.

6.1. Initial values of packets processed by main parser
6.1.1. Initial packet contents for packets from ports

Packet is as received from Ethernet port.
User-definedmetadata is empty?

6.1.2. Initial packet contents for packets looped back from host-to-network path

Packet is as came out of host-to-net received from Ethernet port.

12

There can be user-definedmetadata included with these packets.

6.2. Behavior of packets after pre block is complete
Cases: drop vs. not, do something in net-to-host inline extern block or not.

6.3. Initial values of packets processed in network-to-host direction by main
block
6.3.1. Initial packet contents for normal packets

The packet should be either: + exactly as arrived at the pre parser, if the net-to-host inline extern was
directed not to modify the packet + exact as output by the net-to-host inline extern

The user-definedmetadata should be exactly as output by the pre control.
The standardmetadata contents should be specified in detail here.

6.3.2. Initial packet contents for recirculated packets

Give any differences between this case and previous section.

6.4. Behavior of packets after main block is complete in network-to-host direc-
tion
Cases: drop, recirculate, loopback to host-to-net direction, to message processing. Describe the con-
ditions in which each occurs.

6.5. Initial values of packets processed in host-to-network direction by main
block
6.5.1. Initial packet contents for normal packets

This is for packets from themessage processing block.

6.5.2. Initial packet contents for recirculated packets

Give any differences between this case and previous section.

6.5.3. Initial packet contents for packets looped back after network-to-host main pro-
cessing

6.6. Behavior of packets after main block is complete in host-to-network direc-
tion
Cases: drop, recirculate, to queues. Describe the conditions in which each occurs.

13

6.7. Contents of packets sent out to ports

6.8. Functions for directing packets
6.8.1. Extern function send_to_port

extern void send_to_port(PortId_t dest_port);

The extern function send_to_port is used to direct a packet to a specified network port, or to a vport.
Invoking send_to_port(x) is supported only within the main control. There are four cases to consider,
detailed below.

• current packet direction is HOST_TO_NET, and x is a network port id.

Calling send_to_port(x)modifies hidden state for this packet, so that the packet will be transmitted out
of the network port with id x, without being looped back.

• current packet direction is NET_TO_HOST, and x is a network port id.

Calling send_to_port(x)modifies hidden state for this packet, so that when the packet is finished with
themain control andmain deparser, it will loop back in the host side, and later return to be processed
by the main control in the HOST_TO_NET direction. The hidden state will remain associated with the
packet during that loopback, so that even if no further forwarding functions are called for the packet,
it will be transmitted out of network port x.

• current packet direction is HOST_TO_NET, and x is a vport id.

Calling send_to_port(x)modifies hidden state for this packet, so that when the packet is finished with
themain control andmaindeparser, itwill take theport loopbackpath, and later return tobeprocessed
by the main control in the NET_TO_HOST direction. The hidden state will remain associated with the
packet during that loopback, so that even if no further forwarding functions are called for the packet,
it will be sent to the vport with id x in the host.

• current packet direction is NET_TO_HOST, and x is a vport id.

Calling send_to_port(x)modifies hidden state for this packet, so that the packetwill be sent to the vport
with id x in the host, without being looped back.

6.9. Packet Mirroring

extern void mirror_packet(MirrorSlotId_t mirror_slot_id,

MirrorSessionId_t mirror_session_id);

Theextern function mirror_packet is used tocauseamirror copyof thepacket currentlybeingprocessed
to be created. Invoking mirror_packet(x) is supported only within the main control.

PNA enables multiple mirror copies of a packet to be created during a single execution of Main-
Control, by calling mirror_packet with different mirror slot id values. PNA targets should support mir-
ror_slot_id values in the range 0 through 3, at least, but are allowed to support a larger range.

When MainControl begins execution, all mirror slots are initialized so that they do not create a copy
of the packet.

14

After calling mirror_packet(slot_id, session_id), then when the main control finishes execution,
the target will make a best effort to create a copy of the packet that will be processed according to the
parameters configured by the control plane for themirror sessionnumbered session_id, formirror slot
slot_id. Note that this is best effort – if the target device is already near its upper limit of its ability to
create mirror copies, then some later mirror copies may not be made, even though the P4 program
requested them.

Each of the mirror slots is independent of each other. For example, calling mirror_packet(1, ses-

sion_id) has no effect onmirror slots 0, 2, or 3.
Mirror session id 0 is reserved by the architecture, andmust not be used by a P4 developer.
If multiple calls are made to mirror_packet() for the same mirror slot id in the same execution of

themain control, only the last session_id value is used to create a copy of the packet. That is, every call
to mirror_packet(slot_id, session_id) overwrites the effects of any earlier to mirror_packet()with the
same slot_id.

The effects of mirror_packet() calls are independent of calls to drop_packet() and send_to_port().
Regardless of which of those things is done to the original packet, up to one mirror packet per mirror
slot can be created.

The control plane code can configure the following properties of each mirror session, indepen-
dently of other mirror sessions:

• packet_contents

If PRE_MODIFY, then themirrored packet's contentswill be the same as the original packet as it waswhen
the packet began the execution of the main control that invoked the mirror_packet() function.

If POST_MODIFY, then the mirrored packet's contents will be the same as the original packet that is
being mirrored, after any modifications made during the execution of the main control that invoked
the mirror_packet() function.

• truncate

true to limit the lengthof themirroredpacket to the truncate_length. false to cause themirroredpacket
not to be truncated, in which case the truncate_length property is ignored for this mirror session.

• truncate_length

In units of bytes. Targets may limit the choices here, e.g. to a multiple of 32 bytes, or perhaps even a
subset of those choices.

• sampling_method

One of the values: RANDOM_SAMPLING, HASH_SAMPLING.
If RANDOM_SAMPLING, then a mirror copy requested for this mirror session will only be created with a

configured probability given by the sample_probability property.
If HASH_SAMPLING, then a target-specific hash function will be calculated over the packet's header

fields resulting in a hash output value H. A mirror copy will be created if (H & sample_hash_mask)

== sample_hash_value.

• meter_parameters

If the conditions specified by the sampling_method and other sampling properties are passed, then a P4
meterdedicated foruseby thismirror sessionwill beupdated. If it returnsa GREEN result, then themirror

15

copy will be created (still with best effort, if the target device's implementation is still oversubscribed
with requests to create mirror copies).

If the meter update returns any result other than GREEN, then nomirror copy will be created.

• destination_port

A network port id, or a vport id.
If destination_port is a network port id, that network port is the destination ofmirrored copy pack-

ets created by this session. If the mirror_packet() call for this session was invoked in the NET_TO_HOST

direction, mirror copy packets created will loop back in the host side of the target, and later come back
for processing in the main block in the HOST_TO_NET direction, already destined for the network port
destination_port. That port can be overwritten by calls to forwarding functions.

If destination_port is a vport id, that vport is thedestinationofmirroredcopypackets createdby this
session. If the mirror_packet() call for this sessionwas invoked in the HOST_TO_NETdirection,mirror copy
packets created will loop back in the network port side of the NIC, and later come back for processing
in the main block in the NET_TO_HOST direction, already destined for the vport destination_port. That
vport can be overwritten by calls to forwarding functions.
TBD: When a mirror copied packet comes back to the main control, it will have some metadata indi-
cating it ismirror copy. We should define away in PNA to recognize suchmirror copies, e.g. some new
extern function call returning true if the packet was created by a mirror_packet operation.

6.10. Packet recirculation

7. PNA Extern Objects
7.1. Restrictions on where externs may be used
All instantiations in a P416 program occur at compile time, and can be arranged in a tree structure we
will call the instantiation tree. The root of the tree T represents the top level of the program. Its child is
the node for the package PNA_NIC described in Section 5, and any externs instantiated at the top level of
the program. The children of the PNA_NIC node are the packages and externs passed as parameters to
the PNA_NIC instantiation. See Figure 3 for a drawing of the smallest instantiation tree possible for a P4
programwritten for PNA.

Figure 3. Minimal PNA instantiation tree

If any of those parsers or controls instantiate other parsers, controls, and/or externs, the instantia-
tion tree contains child nodes for them, continuing until the instantiation tree is complete.

For every instance whose node is a descendant of the Ingress node in this tree, call it an Ingress

instance. Similarly for the other ingress and egress parsers and controls. All other instances are top
level instances.

APNA implementation is allowed to reject programs that instantiate externs, or attempt to call their
methods, from anywhere other than the places mentioned in Table 2.

For example, Counter being restricted to “Pre, Main” means that every Counter instance must be
instantiated within either the PreControl control block or the MainControl block, or be a descendant of
one of those nodes in the instantiation tree. If a Counter instance is instantiated in Main, for example,
then it cannot be referenced, and thus itsmethods cannot be called, fromany block except MainControl
or one of its descendants in the tree.

16

Extern type Where it may be instantiated and called from
ActionProfile PreControl, MainControl
ActionSelector PreControl, MainControl
Checksum MainParser, MainDeparser
Counter PreControl, MainControl
Digest MainDeparser
DirectCounter PreControl, MainControl
DirectMeter PreControl, MainControl
Hash PreControl, MainControl
InternetChecksum MainParser, MainDeparser
Meter PreControl, MainControl
Random PreControl, MainControl
Register PreControl, MainControl

Table 2. Summary of controls that can instantiate and invoke externs.

PNA implementations need not support instantiating these externs at the top level. PNA imple-
mentations are allowed to accept programs that use these externs in other places, but they need not.
Thus P4 programmers wishing to maximize the portability of their programs should restrict their use
of these externs to the places indicated in the table.

All methods for type packet_out, e.g., emit, are restricted to be within deparser control blocks in
PNA, because those are the only places where an instance of type packet_out is visible. Similarly all
methods for type packet_in, e.g. extract and advance, are restricted to be within parsers in PNA pro-
grams. P416 restricts all verify method calls to be within parsers for all P416 programs, regardless of
whether they are for the PNA.

See the PSA specification for definitions of all of these externs. There is work under way as of this
writing that may result in these extern defintions being moved from the PSA specification into a sepa-
rate standard library of P4 extern definitions, and if this is done, both the PSA and PNA specifications
will reference that.

8. PNA Table Properties
Table 3 lists all P4 table properties defined by PNA that are not included in the base P416 language
specification.

APNAimplementationneednot supportbothof a pna_implementationand pna_direct_counterprop-
erty on the same table.

Similarly, aPNA implementationneednot supportbothof a pna_implementationand pna_direct_meter

property on the same table.
APNAimplementationmust implement tables thathavebotha pna_direct_counterand pna_direct_meter

property.
A PNA implementationneednot support both pna_implementation and pna_idle_timeoutproperties

on the same table.

17

Property name Type See also
add_on_miss boolean Section 8.1
pna_direct_counter one DirectCounter instance name
pna_direct_meter one DirectMeter instance name
pna_implementation instance name of one ActionProfile

or ActionSelector

pna_empty_group_action action
pna_idle_timeout PNA_IdleTimeout_t Section 8.2

Table 3. Summary of PNA table properties.

8.1. Tables with add-on-miss capability
PNAdefines the add_on_miss table property. If the value of this property is true for a table, the P4 devel-
oper is allowed to define adefault action for the table that calls the add_entry extern function. add_entry
adds a new entry to the tablewhose default action calls the add_entry function. Thenew entrywill have
the same key that was just looked up.

The control plane API is still allowed to add, modify, and delete entries of such a table, but any
entries added via the add_entry function do not require the control plane software to be involved in any
way. It is expected that PNA implementations will be able to sustain add_entry calls at a large fraction
of their line rate, but it neednot be at the samepacket rate supported for processing packets that do not
call add_entry. The new table entry will be matchable when the next packet is processed that applies
this table.

extern bool add_entry<T>(string action_name,

in T action_params);

It is expected that many PNA implementations will restrict add_entry() to be called with the following
restrictions:

• Only fromwithin an action
• Only if the action is a default action of a table with property add_on_miss equal to true.
• Only for a table with all key fields having match_kind exact.
• Only with an action name that is one of the hit actions of that same table. This action has param-

eters that are all directionless.
• The type T is a struct containing one member for each directionless parameter of the hit action

to be added. The member names must match the hit action parameter names, and their types
must be the same as the corresponding hit action parameters.

The new entry will have the same key field values that were searched for in the table when the miss
occurred, which caused the table's default action to be executed. The action will be the one named by
the string that is the file of the parameter action_name.

If the attempt to add a table entry succeeds, the return value is true, otherwise false.

18

8.2. Table entry timeout notification
PNA uses the pna_idle_timeout to enable a table implementation send notifications from the PNA de-
vice when a configurable time has passed since an entry was last matched. The property may take one
of two values – NO_TIMEOUT, and NOTIFY_CONTROL. NO_TIMEOUT disables idle timeout support for the table
and it is the default value when the property is not present. NOTIFY_CONTROL enables the notification. A
PNA implementation will then generate an API for the control plane to set time-to-live (TTL) values
for table entries and if at any time during its lifetime, the table entry is not “hit” (i.e. not selected by any
packet lookup) for a lapse of time greater or equal to its TTL, the device should generate a notification
to the control plane. The rate and mode of how the notifications are generated and delivered to the
control plane are subject to configuration parameters specified by the control plane API.

Example:

enum PNA_IdleTimeout_t {

NO_TIMEOUT,

NOTIFY_CONTROL

}

table t {

action a1 () { ... }

action a2 () { ... }

key = { hdr.f1: exact; }

actions = { a1; a2; }

default_action = a2;

pna_idle_timeout = PNA_IdleTimeout_t.NOTIFY_CONTROL;

}

Restrictions on the TTL values and notifications:

• It is likely that any hardware implementation will have a limited number of bits to represent the
values, and, since the values are programmed at runtime, it is the responsibility of the runtime
(P4Runtime or other controller software) to guarantee that the TTL values can be represented in
the device. This can be done by scaling the values to the number of bits available on the platform,
ensuring that the range of values between different entries are representable. A PNA implemen-
tation should only enable the programming of such tables, and return an error if the device does
not support the idle timeout at all.

• If no value is programmed for a table entry, even though the table has enabled the idle timeout
property, the entry will not generate a notification.

• PNA does not require a timeout value for a default action entry. The reason for not making this
mandatory in the specification is that tthe default action may not have an explicit table entry to
represent it, and also there are no known compelling use cases for a controller knowingwhen no
misses have occurred for a particular table for a long time. The default action entry will not be
aged out.

• Currently, tables implementedusingActionSelectorsandActionProfilesdonot support the pna_idle_timeout
property. Future versions of the specificationmay remove this restriction.

19

9. Timestamps

10. Atomicity of control plane API operations

A. Appendix: Open Issues

B. Appendix: Rationale for design
B.1. Why a common pipeline, instead of separate pipelines for each direction?
TBD: Andy can write this one. Basic reasons are summarized in existing slides.

B.2. Why separate programmable pre blocks for pre-decryption packet process-
ing?
TBD: Andy can write this one. Basic reasons are summarized in existing slides.

B.3. Is it inefficient to have the MainParser redo work?
If the only changes made by the inline extern in the network-to-host direction were to decrypt parts
of the packet that were previously encrypted, but everything before the first decrypted byte remained
exactly the same, then it seems like it is a waste of effort that the main parser starts parsing the packet
over again from the beginning.

It is true that an IPsec decryption inline extern is unlikely to change an Ethernet header at the be-
ginning of the packet, but it does seem likely that it couldmake the following kinds of changes to parts
of the packet before the first decrypted byte:

• Remove headers: If the received packet was IPsec tunnel mode, it might be useful if the inline
extern removes the outer IP header, since it was added to the packet at the point of IPsec en-
cryption. The software sending the packet (before IPsec encryption occurred) did not create that
header, and the corresponding layer of software receiving the decrypted packet does not want to
see such IPsec-specific headers.

• Modify headers: If the received packet was IPsec transport mode, it might be useful if the IP
header whose protocol was equal to the standard numbers for AH or ESP was changed to be the
next header after the AHand ESP headers are removed by the inline extern. Again, what an IPsec
decryption block does might be useful to make similar to what the IPsec layer of software does
in a software IP stack. The layer of software processing the decrypted packet should see what the
last layer of software sent before it was encrypted.

If any or all of the above are true of the inline extern block's changes to the packet, then it seems that
the only way you could save the main parser some work is to somehow encode the results of the pre
parser, and also undo those results for any headers that were modified in the inline extern. Then you
would also need the main parser to be able to start from one of multiple possible states in the parser
state machine, and continue from there.

That is all possible to do, but it seems like an awkward thing to expose to a P4 developer, e.g. should
we require them to write a main parser that has a start state that immediately branches one of 7 ways
based upon some intermediate state the the pre parser reached, as modified by the inline extern if it
modified or removed some of those headers?

20

A NIC implementation might do such things, and it seems likely an implementation might use
some of the techniques mentioned in the previous paragraph, but hidden from the P4 developer. The
proposed PNA design should not prevent this, if an implementer is willing to go to that effort.

C. Appendix: Packet path figures
C.1. Network to host

M
es

sa
ge

 P
ro

ce
ss

in
g

Host-to-net
inline extern

N
et

w
or

k
Po

rt
s

Ho
st

 1
Ho

st
 N

…

Main Parser

Main control
Main Deparser

FROM_HOST

TO_HOST

FROM_NET

TO_NET

Pre control

N
et

-t
o-

ho
st

in

lin
e

ex
te

rn

Programmed in P4

Fixed function
Planned Extension

Figure 4. Network to host packet path

See Figure 4. If decryption is desired, the net-to-host inline extern performs it. If no decryption is
required, the net-to-host inline extern outputs the same packet payload that it received, i.e. it is a no-
op in the path.

C.2. Network to host with mirror copy to different host
See Figure 5. This is similar to thenetwork to host path, except that the MainControl codedirects that the
packet should be mirrored to a second host, e.g. an inside-the-NIC CPU complex used for exception
packets. Logically, the copy occurs after the main deparser.

Onepossibility forwritingP4code todo this is byhaving the MainDeparseroptionally invokeamirror
extern, which could provide an extra header to include before the mirrored copy.

C.3. Host to network
See Figure 6. If encryption is desired, the host-to-net inline extern performs it. If no encryption is
required, the host-to-net inline extern outputs the same packet payload that it received, i.e. it is a no-

21

M
es

sa
ge

 P
ro

ce
ss

in
g

Host-to-net
inline extern

N
et

w
or

k
Po

rt
s

Ho
st

 1
Ho

st
 N

…

Main Parser

Main control
Main Deparser

FROM_HOST

TO_HOST

FROM_NET

TO_NET

Pre control

N
et

-t
o-

ho
st

in

lin
e

ex
te

rn

Programmed in P4

Fixed function
Planned Extension

Figure 5. Network to host packet path, with mirror copy to second host

M
es

sa
ge

 P
ro

ce
ss

in
g

Host-to-net
inline extern

N
et

w
or

k
Po

rt
s

Ho
st

 1
Ho

st
 N

…

Main Parser

Main control
Main Deparser

FROM_HOST

TO_HOST

FROM_NET

TO_NET

Pre control

N
et

-t
o-

ho
st

in

lin
e

ex
te

rn

Programmed in P4

Fixed function
Planned Extension

Figure 6. Host to network packet path

22

op in the path.

C.4. Host to network with mirror copy to a different host

M
es

sa
ge

 P
ro

ce
ss

in
g

Host-to-net
inline extern

N
et

w
or

k
Po

rt
s

Ho
st

 1
Ho

st
 N

…

Main Parser

Main control
Main Deparser

FROM_HOST

TO_HOST

FROM_NET

TO_NET

Pre control

N
et

-t
o-

ho
st

in

lin
e

ex
te

rn

Programmed in P4

Fixed function
Planned Extension

Figure 7. Host to network packet path, with mirror copy to a different host

See Figure 7. This is similar to thehost to networkpath, except that the MainControl codedirects that the
packet should be mirrored to a host, e.g. an inside-the-NIC CPU complex used for exception packets.
Logically, the copy occurs after the main deparser.

Onepossibility forwritingP4code todo this is byhaving the MainDeparseroptionally invokeamirror
or mirror extern, which could provide an extra header to include before the mirrored copy.

C.5. Host to host
See Figure 8. This path maymore often be called the VM to VM path.

The host-to-net inline extern may be no-op or perform encryption, as directed by the P4 code in
the MainControl. The net-to-host inline extern may be no-op or perform decryption, as directed by the
P4 code in the PreControl.

C.6. Port to port
See Figure 9. This path is shown going through the memory of one of the hosts. The host could be a
CPUcore complexwithin theNICdevice itself, with its ownmemory, or it could be ahostCPUcomplex
and its DRAM.

23

M
es

sa
ge

 P
ro

ce
ss

in
g

Host-to-net
inline extern

N
et

w
or

k
Po

rt
s

Ho
st

 1
Ho

st
 N

…

Main Parser

Main control
Main Deparser

FROM_HOST

TO_HOST

FROM_NET

TO_NET

Pre control

N
et

-t
o-

ho
st

in

lin
e

ex
te

rn

Programmed in P4

Fixed function
Planned Extension

Figure 8. Host to host packet path

M
es

sa
ge

 P
ro

ce
ss

in
g

Host-to-net
inline extern

N
et

w
or

k
Po

rt
s

Ho
st

 1
Ho

st
 N

…

Main Parser

Main control
Main Deparser

FROM_HOST

TO_HOST

FROM_NET

TO_NET

Pre control

N
et

-t
o-

ho
st

in

lin
e

ex
te

rn

Programmed in P4

Fixed function
Planned Extension

Figure 9. Port to port packet path

24

D. Appendix: Packet ordering

E. Appendix: Revision History

Release Release Date Summary of Changes
0.1 November 5, 2020 Skeleton specification.
0.5 May 15, 2021 Initial draft.

25

	1. Introduction
	1.1. Packet processing in the network to host direction
	1.2. Message processing
	1.3. Packet processing in the host to network direction
	1.4. PNA P416 architecture

	2. Naming conventions
	3. Packet paths
	4. PNA Data types
	4.1. PNA type definitions
	4.1.1. PNA type definition code excerpt
	4.1.2. PNA port types and values

	4.2. PNA supported metadata types
	4.3. Match kinds
	4.4. Data plane vs. control plane data representations

	5. Programmable blocks
	6. Packet Path Details
	6.1. Initial values of packets processed by main parser
	6.1.1. Initial packet contents for packets from ports
	6.1.2. Initial packet contents for packets looped back from host-to-network path

	6.2. Behavior of packets after pre block is complete
	6.3. Initial values of packets processed in network-to-host direction by main block
	6.3.1. Initial packet contents for normal packets
	6.3.2. Initial packet contents for recirculated packets

	6.4. Behavior of packets after main block is complete in network-to-host direction
	6.5. Initial values of packets processed in host-to-network direction by main block
	6.5.1. Initial packet contents for normal packets
	6.5.2. Initial packet contents for recirculated packets
	6.5.3. Initial packet contents for packets looped back after network-to-host main processing

	6.6. Behavior of packets after main block is complete in host-to-network direction
	6.7. Contents of packets sent out to ports
	6.8. Functions for directing packets
	6.8.1. Extern function =-1LuxiMono send_to_port

	6.9. Packet Mirroring
	6.10. Packet recirculation

	7. PNA Extern Objects
	7.1. Restrictions on where externs may be used

	8. PNA Table Properties
	8.1. Tables with add-on-miss capability
	8.2. Table entry timeout notification

	9. Timestamps
	10. Atomicity of control plane API operations
	A. Appendix: Open Issues
	B. Appendix: Rationale for design
	B.1. Why a common pipeline, instead of separate pipelines for each direction?
	B.2. Why separate programmable pre blocks for pre-decryption packet processing?
	B.3. Is it inefficient to have the =-1LuxiMono MainParser redo work?

	C. Appendix: Packet path figures
	C.1. Network to host
	C.2. Network to host with mirror copy to different host
	C.3. Host to network
	C.4. Host to network with mirror copy to a different host
	C.5. Host to host
	C.6. Port to port

	D. Appendix: Packet ordering
	E. Appendix: Revision History

