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Problems with Status Quo

• Expressibility
– Configure collection & analysis stages separately 
– Static (and often coarse) data collection
– Brittle analysis setup---specific to collection tools
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Problems with Status Quo

• Expressibility
– Configure collection & analysis stages separately 
– Static (and often coarse) data collection
– Brittle analysis setup---specific to collection tools

• Scalability
As Traffic Volume or # Monitoring Queries increases

• Hard to answer queries in real-time 
• Hard to transport data from monitoring sensors
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Hard to express & scale queries for 
network telemetry tasks!



SONATA: Query-Driven Telemetry

• Uniform Programming Abstraction
Express queries as dataflow operations over pkt. tuples

• Query-Driven Data Reduction
Execute subset of dataflow operations in data plane

• Coordinated Data Collection & Analysis
Select query plans that make best use of available 
resources
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Uniform Programming Abstraction

• Extensible Packet-tuple Abstraction
Queries operate over all packet tuples, at every location 
in the network

• Expressive Dataflow Operators
– Most telemetry applications require

• collecting aggregate statistics over subset of traffic
• joining results of one analysis with the other

– Easy to express them as declarative queries 
composed of dataflow operators
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Example Query

Detecting DNS Reflection Attack
Detect hosts for which # of unique source IPs sending DNS 
response messages exceeds threshold (Th)
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victimIPs = pktStream(W)
.filter(p => p.srcPort == 53)
.map(p => (p.dstIP, p.srcIP))
.distinct()
.map((dstIP, srcIP) => (dstIP, 1))
.reduceByKey(sum)
.filter((dstIP, count) => count > Th)
.map((dstIP, count) => dstIP)

Express queries without worrying about 
where and how they get executed



Changing Status Quo

• Expressibility
– Express dataflow queries over packet tuples
– Not tied to low-level (3rd party/platform-specific) APIs
– Trivial to add new queries and change collection tools
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Query Execution

Packet Capture

Stream ProcessorRuntimeQueries

Packet Tuples

Process all (or subset of) captured packet tuples using 
state-of-the-art Stream Processor

Expressible but not Scalable!



PISA Targets for Data Reduction

• Programmable parsing
Allow new query-specific header fields for parsing

• State in packets & registers
Support simple stateful computations

• Customizable hash functions
Support hash functions over flexible set of fields

• Flexible match/action table pipelines
Support match/action tables with prog. actions 11



Compiling Dataflow Operators

• Map, Filter & Sample
Apply sequence of match-action tables

• Distinct & Reduce
– Compute index, & read value from hash tables
– Apply function (e.g., bit_or for distinct) & then update 

the hash table
– Use sketches, e.g. reduce(sum) à CM Sketches

• Limitations
– Complex transformations, e.g. log, regex, etc.  
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Compiling Dataflow Queries

• Compiling a Single Query
– Generate & update query-specific metadata fields
– Apply operator’s match-action tables in sequence
– Clone packet if report bit set

• Compiling Multiple Queries
– Generate & update metadata fields for all queries
– Apply operators for all queries in sequence
– Clone packet if report bit is set for at least one query
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Coordinated Data Coll. & Analysis

• Query Partitioning
– Execute subset of dataflow operators in data plane
– Reduce packet tuples at the cost of additional state in 

the data plane

• Iterative Refinement
– Iteratively zoom-in on traffic of interests
– Reduce state at the cost of additional detection delay
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How to select the best query plan?



Query Planning
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• Reflection Attack Query

• Partitioning Plans
Plan 1: Data Plane only
Plan 2: Stream Processor only

• Refinement Plans
– Refinement key: dstIP
– Refinement levels: {/8, /32}

pktStream(W)
.filter(p => p.srcPort == 53)
.map(p => (p.dstIP, p.srcIP))
.distinct()
.map((dstIP, srcIP)=>(dstIP,1))
.reduceByKey(sum)
.filter((dstIP,count)=>count>Th)
.map((dstIP, count) => dstIP)



Query Planning
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• Reflection Attack Query

• Partitioning Plans
Plan 1: Data Plane only
Plan 2: Stream Processor only

• Refinement Plans
– Refinement key: dstIP
– Refinement levels: {/8, /32}

Query Plan Graph
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Query Planning
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Src à dIP/8,1 à dIP/32,2 à Tgt

Query Plan Graph
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Selects plan with smallest weighted cost



Implementation
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Streaming Driver

Data Plane Target

Packets In

Stream Processor

SONATA’s API

Queries
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(qid, …)

Q2 QN

Queries

Runtime

Data Plane Driver

Packets OutCollection is now driven by Analysis!

Query Partitioning

Iterative Refinement



Evaluation

• Workload
Large-IXP network: 2 hours long IPFIX trace, 3 Tbps
peak traffic, packet sampling rate = 1/10K

• Queries
DDoS-UDP, SSpreader, PortScan, Reflection Attack

• Comparisons
Stream-Only, Part-OF, Part-PISA, Fixed-Refinement
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Benefits of Query Planning
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Selects eight different query plans for different 
system configurations

• Bmax: Max. state data 
plane can support

• Nmax: Max. pkt. tuples 
stream processor can 
process

• Each color represents a 
unique query plan

SONATA makes best use of available 
resources



Scaling Query Executions
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Executing stateful operations in data plane 
reduces workload on Stream Proc.



Scaling Query Executions
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State (KB) required by data plane targets

Iterative refinement reduces state required 
by the data plane targets
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Changing Status Quo

• Expressibility
– Express Dataflow queries over packet tuples
– Not worry about how and where the query is executed
– Adding new queries and collection tools is trivial

• Scalability
– Answers hundreds of queries in real-time for traffic 

volume as high as few Tb/s
– Strikes a balance between available resources, i.e. 

• tuples processed by the stream processor 
• state in the data plane

23

Expressible & Scalable!



Summary

• SONATA makes it easier to express and scale
network monitoring queries using
– Programmable Data Plane
– Scalable Stream Processor

• Running Code
– Github: github.com/Sonata-Princeton/SONATA-DEV
– Run test queries or express new ones

• SONATA@arxiv: arxiv.org/abs/1705.01049 

24


