
SONATA:
Query-Driven Network Telemetry

Arpit Gupta
Princeton University

Rob Harrison, Ankita Pawar, Rüdiger Birkner,

Marco Canini, Nick Feamster, Jennifer Rexford, Walter Willinger

2

Conventional Network Telemetry
Compute Store

Queries

NetFlow, pcap
sFlow, SNMP, etc.

Collection

Analysis

3

Conventional Network Telemetry
Compute Store

NetFlow, pcap
sFlow, SNMP, etc.

Collection

Analysis

Collection is not driven by Analysis

Queries

Problems with Status Quo

• Expressibility
– Configure collection & analysis stages separately
– Static (and often coarse) data collection
– Brittle analysis setup---specific to collection tools

4

Problems with Status Quo

• Expressibility
– Configure collection & analysis stages separately
– Static (and often coarse) data collection
– Brittle analysis setup---specific to collection tools

• Scalability
As Traffic Volume or # Monitoring Queries increases

• Hard to answer queries in real-time
• Hard to transport data from monitoring sensors

5

Hard to express & scale queries for
network telemetry tasks!

SONATA: Query-Driven Telemetry

• Uniform Programming Abstraction
Express queries as dataflow operations over pkt. tuples

• Query-Driven Data Reduction
Execute subset of dataflow operations in data plane

• Coordinated Data Collection & Analysis
Select query plans that make best use of available
resources

6

Uniform Programming Abstraction

• Extensible Packet-tuple Abstraction
Queries operate over all packet tuples, at every location
in the network

• Expressive Dataflow Operators
– Most telemetry applications require

• collecting aggregate statistics over subset of traffic
• joining results of one analysis with the other

– Easy to express them as declarative queries
composed of dataflow operators

7

Example Query

Detecting DNS Reflection Attack
Detect hosts for which # of unique source IPs sending DNS
response messages exceeds threshold (Th)

8

victimIPs = pktStream(W)
.filter(p => p.srcPort == 53)
.map(p => (p.dstIP, p.srcIP))
.distinct()
.map((dstIP, srcIP) => (dstIP, 1))
.reduceByKey(sum)
.filter((dstIP, count) => count > Th)
.map((dstIP, count) => dstIP)

Express queries without worrying about
where and how they get executed

Changing Status Quo

• Expressibility
– Express dataflow queries over packet tuples
– Not tied to low-level (3rd party/platform-specific) APIs
– Trivial to add new queries and change collection tools

9

10

Query Execution

Packet Capture

Stream ProcessorRuntimeQueries

Packet Tuples

Process all (or subset of) captured packet tuples using
state-of-the-art Stream Processor

Expressible but not Scalable!

PISA Targets for Data Reduction

• Programmable parsing
Allow new query-specific header fields for parsing

• State in packets & registers
Support simple stateful computations

• Customizable hash functions
Support hash functions over flexible set of fields

• Flexible match/action table pipelines
Support match/action tables with prog. actions 11

Compiling Dataflow Operators

• Map, Filter & Sample
Apply sequence of match-action tables

• Distinct & Reduce
– Compute index, & read value from hash tables
– Apply function (e.g., bit_or for distinct) & then update

the hash table
– Use sketches, e.g. reduce(sum) à CM Sketches

• Limitations
– Complex transformations, e.g. log, regex, etc.

12

Compiling Dataflow Queries

• Compiling a Single Query
– Generate & update query-specific metadata fields
– Apply operator’s match-action tables in sequence
– Clone packet if report bit set

• Compiling Multiple Queries
– Generate & update metadata fields for all queries
– Apply operators for all queries in sequence
– Clone packet if report bit is set for at least one query

13

Coordinated Data Coll. & Analysis

• Query Partitioning
– Execute subset of dataflow operators in data plane
– Reduce packet tuples at the cost of additional state in

the data plane

• Iterative Refinement
– Iteratively zoom-in on traffic of interests
– Reduce state at the cost of additional detection delay

14

How to select the best query plan?

Query Planning

15

• Reflection Attack Query

• Partitioning Plans
Plan 1: Data Plane only
Plan 2: Stream Processor only

• Refinement Plans
– Refinement key: dstIP
– Refinement levels: {/8, /32}

pktStream(W)
.filter(p => p.srcPort == 53)
.map(p => (p.dstIP, p.srcIP))
.distinct()
.map((dstIP, srcIP)=>(dstIP,1))
.reduceByKey(sum)
.filter((dstIP,count)=>count>Th)
.map((dstIP, count) => dstIP)

Query Planning

16

• Reflection Attack Query

• Partitioning Plans
Plan 1: Data Plane only
Plan 2: Stream Processor only

• Refinement Plans
– Refinement key: dstIP
– Refinement levels: {/8, /32}

Query Plan Graph

dIP/8,1dIP/8,2dIP/32,1dIP/32,2

dIP/32,1dIP/32,2

Src

Tgt

w0,8,1w0,8,2w0,32,2
w0,32,1

w8,32,1
w8,32,2w8,32,2

w8,32,1

0

0 00

Query Planning

17

Src à dIP/8,1 à dIP/32,2 à Tgt

Query Plan Graph

dIP/8,1dIP/8,2dIP/32,1dIP/32,2

dIP/32,1dIP/32,2

Src

Tgt

w0,8,1w0,8,2w0,32,2
w0,32,1

w8,32,1
w8,32,2w8,32,2

w8,32,1

0

0 00

Selects plan with smallest weighted cost

Implementation

18

Streaming Driver

Data Plane Target

Packets In

Stream Processor

SONATA’s API

Queries

Q1

(qid, …)

(qid, …)

Q2 QN

Queries

Runtime

Data Plane Driver

Packets OutCollection is now driven by Analysis!

Query Partitioning

Iterative Refinement

Evaluation

• Workload
Large-IXP network: 2 hours long IPFIX trace, 3 Tbps
peak traffic, packet sampling rate = 1/10K

• Queries
DDoS-UDP, SSpreader, PortScan, Reflection Attack

• Comparisons
Stream-Only, Part-OF, Part-PISA, Fixed-Refinement

19

Benefits of Query Planning

20

2.5
5.0
7.5

10.0
12.5
15.0

Part-OF Part-PISA

2 4 6 8

2.5
5.0
7.5

10.0
12.5
15.0

Fixed Refinement

2 4 6 8

Sonata

0.0 0.2 0.4 0.6 0.8 1.0
Nmax (Kpps)

0.0

0.2

0.4

0.6

0.8

1.0

B
m

ax
(K

B
)

1

2

3

4

5

6

7

8

Selects eight different query plans for different
system configurations

• Bmax: Max. state data
plane can support

• Nmax: Max. pkt. tuples
stream processor can
process

• Each color represents a
unique query plan

SONATA makes best use of available
resources

Scaling Query Executions

21

DDoS-UDP SSpreader PortScan All
Queries

0

6

12

18

24

30

N
um

be
ro

fT
up

le
s

(x
10

00
)

Part-OF SONATA

Number of pkt tuples processed by Stream Processor

Executing stateful operations in data plane
reduces workload on Stream Proc.

Scaling Query Executions

22

State (KB) required by data plane targets

Iterative refinement reduces state required
by the data plane targets

DDoS-UDP SSpreader PortScan All
Queries

0

5

10

15

20

25

St
at

e
(K

B
)

Part-PISA Fixed Ref. SONATA

Changing Status Quo

• Expressibility
– Express Dataflow queries over packet tuples
– Not worry about how and where the query is executed
– Adding new queries and collection tools is trivial

• Scalability
– Answers hundreds of queries in real-time for traffic

volume as high as few Tb/s
– Strikes a balance between available resources, i.e.

• tuples processed by the stream processor
• state in the data plane

23

Expressible & Scalable!

Summary

• SONATA makes it easier to express and scale
network monitoring queries using
– Programmable Data Plane
– Scalable Stream Processor

• Running Code
– Github: github.com/Sonata-Princeton/SONATA-DEV
– Run test queries or express new ones

• SONATA@arxiv: arxiv.org/abs/1705.01049

24

